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ABSTRACT. In this paper, we study the oscillatory behavior of solutions of the

fractional difference equation of the form

Δ
(
r(t)g

(
Δαx(t)

))
+ p(t)f

(t−1+α∑
s=t0

(t− s− 1)(−α)x(s)

)
= 0, t ∈ Nt0+1−α,

where Δα denotes the Riemann-Liouville fractional difference operator of order
α, 0 < α ≤ 1, Nt0+1−α = {t0 + 1 − α, t0 + 2 − α, . . . }, t0 > 0 and γ > 0 is
a quotient of odd positive integers. We establish some oscillatory criteria for the
above equation, using the Riccati transformation and Hardy type inequalities.
Examples are provided to illustrate the theoretical results.

1. Introduction

Fractional difference equations are generalizations of classical difference equa-
tions of integer order and can find their applications in many fields of science and
machinery. In the last few decades, extensive research has been made on various
aspects of fractional difference equations. The existence, uniqueness, stability,
oscillation, numerical studies, and various scientific models are some examples.
Fractional calculus finds significant application in the fields of capacitor the-
ory, electrical circuits, viscoelasticity, electro-analytical chemistry, tumor growth
models, neurology, control theory and statistics. Significant progress has been
made in the study of fractional differential equations. On the contrary, very lit-
tle development has been made in the theory of fractional difference equations,
see [5]–[8], [10]. In particular, we notice that the oscillatory results for fractional
difference equations has been studied by several authors [1], [3], [4], [9], [11]–[14].
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T. A b d e l j a w a d [2] extensively studied the properties and relations between
Riemann-Liouville and Caputo fractional differences.

W. N. L i [11] obtained interesting results about T. Kalaimani’s oscillatory
behavior of solutions of the fractional difference equation of the form(

1 + p(t)
)
Δ
(
Δαx(t)

)
+ p(t)Δαx(t) + f

(
t, x(t)

)
= g(t), t ∈ N0,

where Δα is the Riemann–Liouville fractional difference operator of order α with
0 < α ≤ 1.

A. S e c e r and H. A d i g u z e l [14] considered the oscillation of the following
fractional difference equation

Δ
(
a(t)

[
Δ
(
r(t)

(
Δαx(t)

)γ1
)]γ2

)
+ q(t)f

(
t−1+α∑
s=t0

(t− s− 1)(−α)x(s)

)
= 0,

where t ∈ Nt0+1−α, γ1, γ2 are the quotients of two odd positive numbers and
Δα denotes the Riemann–Liouville fractional difference operator of order α,
0 < α ≤ 1 with the condition

∑∞
s=t0

1

a
1
γ2 (s)

= ∞.

G. E. C h a t z a r a k i s et al. [4] studied the oscillatory behavior of the fol-
lowing fractional difference equation

Δ
(
Δαx(t)

)γ
+ q(t)f

(
x(t)

)
= 0, t ∈ Nt0+1−α,

where Δα denotes the Riemann–Liouville fractional difference operator of order
α, 0 < α ≤ 1, γ > 0 is a quotient of odd positive integers with the condition∑∞

s=t0
q

1
γ (s) = ∞.

The objective of this paper is to study the oscillatory behavior of the solutions
of fractional difference equations of the form

Δ
(
r(t)g

(
Δαx(t)

))
+ p(t)f

(
t−1+α∑
s=t0

(t− s− 1)(−α)x(s)

)
= 0, t ∈ Nt0+1−α. (1)

Here Δα denotes the Riemann–Liouville fractional difference operator defined
in [11]. In the paper, we assume the following conditions:

(H1) r(t) and p(t) are positive sequences and f, g : R −→ R are continuous

functions with f(x)
x ≥ k1 and x

g(x) ≥ k2 for some constants k1, k2 and for

all x �= 0.

(H2) g ∈ C(R,R) is a continuous function with vg(v) > 0 for v �= 0 and there
exists a positive constant μ such that g(vw) ≤ μvg(w) for vw �= 0.

A solution x(t) of (1) is said to be oscillatory if it has no last zero, i.e., if
x(t1) = 0, then there exists a t2 > t1 such that x(t2) = 0. Otherwise, the
solution is said to be nonoscillatory. An equation is oscillatory if all its solutions
oscillate.
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2. Preliminaries

In this section, we present some preliminary results from discrete fractional
calculus. We will make use of these results, throughout the paper.

���������� 2.1 (See [14])� Let ν > 0. The νth fractional sum f is defined by

Δ−νf(t) =
1

Γ(ν)

t−ν∑
s=a

(t− s− 1)(ν−1)f(s),

where f is defined for s ≡ a mod (1), Δ−νf(t) is defined for t ≡ (a+ ν) mod (1)

and t(ν) = Γ(t+1)
Γ(t−ν+1) . The fractional sum Δ−νf maps functions defined in Na to

functions defined in Na+ν.

���������� 2.2� (See [11]). Let μ > 0 and m − 1 < μ < m, where m denotes
a positive integer, m = 	μ
. Set ν = m − μ. The μth order fractional difference
is defined as

Δμf(t) = Δm−νf(t) = ΔmΔ−νf(t).

	�

� 2.1 (See [14])� Let x(t) be a solution of (1) and

G(t) =

t−1+α∑
s=t0

(t− s− 1)(−α)x(s).

Then

Δ
(
G(t)

)
= Γ(1− α)Δα

(
x(t)

)
. (2)

	�

� 2.2 (See [10])� If X and Y are nonnegative, then

mXYm−1 −Xm ≤ (m− 1)Ym for m > 1. (3)

3. Main results

�
����
 3.1� Suppose that (H1) and (H2) hold and
∞∑

s=t1

g
(
1/r(s)

)
= ∞. (4)

Furthermore, assume that there exists a positive sequence b(t) such that

lim sup
t→∞

t−1∑
s=t1

[
k1b(s)p(s)− 1

k2
R(s)

]
= ∞, (5)

where

R(s) =
(Δb+(s))

2r(s+ 1)

4b(s+ 1)Γ(1− α)
, Δb+(s) = max

{
Δb(s), 0

}
.

Then all solutions of (1) are oscillatory.
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P r o o f. Assume, for the sake of contradiction, that x(t) is a nonoscillatory so-
lution of (1). Without loss of generality, we can assume that x(t) is an eventually
positive sequence of (1). Then there exists t1 > t0 such that

x(t) > 0, G(t) > 0, f
(
G(t)

)
> 0 for t ≥ t1.

From (1) we have

Δ
(
r(t)g

(
Δαx(t)

))
= −p(t)f

(
G(t)

)
< 0 for t ≥ t1.

Thus, r(t)g
(
Δαx(t)

)
is an eventually nonincreasing sequence. Next we show that

r(t)g
(
Δαx(t)

)
is eventually positive sequence. Suppose there exists an integer

t1 > t0 such that

r(t1)g
(
Δαx(t1)

)
= c < 0 for t1 > t0,

so that

r(t)g
(
Δαx(t)

) ≤ c for t ≥ t1,

or

Δαx(t) ≤ g
(
c/r(t)

) ≤ μcg
(
1/r(t)

)
.

Thus

Δ(G(t)) ≤ Γ(1− α)μcg
(
1/r(t)

)
.

Summing both sides of the last inequality from t1 to t− 1, we get

t−1∑
s=t1

Δ
(
G(s)

) ≤ t−1∑
s=t1

Γ(1 − α)μcg
(
1/r(s)

)
,

or

G(t) ≤ G(t1) +

t−1∑
s=t1

Γ(1 − α)μcg
(
1/r(s)

)→ −∞ as t → ∞,

which contradicts the fact that G(t) > 0. Hence, r(t)g
(
Δαx(t)

)
is eventually

positive.

Define the function w(t) by the Riccati substitution

w(t) =
b(t)r(t)g(Δαx(t))

G(t)
.

Since b(t) > 0, x(t) > 0 and r(t)g
(
Δαx(t)

)
> 0, we have w(t) > 0.
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Now,

Δw(t) = Δ

(
b(t)r(t)g(Δαx(t))

G(t)

)

= b(t)Δ

(
r(t)g(Δαx(t))

G(t)

)
+

r(t + 1)g(Δαx(t+ 1))

G(t+ 1)
Δb(t)

≤ b(t)

(
G(t)(−p(t)f(G(t)))− r(t)g(Δαx(t))ΔG(t)

G(t)G(t+ 1)

)
+

w(t+ 1)

b(t+ 1)
Δb(t)

≤ −b(t)p(t)G(t)f(G(t))

G(t)G(t+ 1)

− b(t)r(t)g(Δαx(t))ΔG(t)w(t)w(t + 1)

b(t)b(t + 1)r(t)r(t + 1)g(Δαx(t))g(Δαx(t+ 1))
+

w(t + 1)

b(t+ 1)
Δb(t)

≤ −b(t)p(t)k1 − ΔG(t)w(t)w(t + 1)

b(t+ 1)r(t+ 1)g(Δαx(t+ 1))
+ Δb+(t)

w(t + 1)

b(t + 1)

= −b(t)p(t)k1 − Γ(1− α)Δαx(t)w(t)w(t + 1)

b(t+ 1)r(t+ 1)g(Δαx(t+ 1))
+ Δb+(t)

w(t + 1)

b(t + 1)
,

or

Δw(t) ≤ Δb+(t)
w(t + 1)

b(t + 1)
− Γ(1 − α)k2w

2(t+ 1)

b(t+ 1)r(t+ 1)
− b(t)p(t)k1. (6)

Let

X =

√
Γ(1− α)k2

b(t+ 1)r(t+ 1)
w(t + 1) and Y =

Δb+(t)

2

√
b(t+ 1)Γ(1− α)k2

r(t+ 1)

.

Using Lemma 2.2 (Hardy type inequality) and setting m = 2, we obtain

2

√
Γ(1− α)k2

b(t+ 1)r(t+ 1)
w(t+ 1)

Δb+(t)

2

√
Γ(1 − α)k2b(t + 1)

r(t+ 1)

− Γ(1− α)k2
b(t + 1)r(t+ 1)

w2(t+ 1)

≤ (Δb+(t))
2r(t + 1)

4b(t+ 1)k2Γ(1− α)
,

which implies that

Δw(t) ≤ (Δb+(t))
2r(t + 1)

4b(t+ 1)k2Γ(1− α)
− b(t)p(t)k1.
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Summing the above inequality from t1 to t− 1, we get

t−1∑
s=t1

Δw(t) ≤
t−1∑
s=t1

(
(Δb+(s))

2r(s+ 1)

4b(s+ 1)k2Γ(1− α)
− b(s)p(s)k1

)
,

or

w(t)− w(t1) ≤
t−1∑
s=t1

(
(Δb+(s))

2r(s+ 1)

4b(s+ 1)k2Γ(1− α)
− b(s)p(s)k1

)
,

i.e.,

t−1∑
s=t1

(
b(s)p(s)k1 − (Δb+(s))

2r(s+ 1)

4b(s+ 1)k2Γ(1 − α)

)
≤ w(t1)− w(t) ≤ w(t1).

Letting t → ∞, we have

lim sup
t→∞

t−1∑
s=t1

(
b(s)p(s)k1 − (Δb+(s))

2r(s+ 1)

4b(s+ 1)k2Γ(1 − α)

)
≤ w(t1)− w(t) ≤ w(t1) < ∞,

which contradicts (5). The proof of the theorem is complete. �

�
����
 3.2� Suppose that (H1) and (H2) hold and

∞∑
s=t1

g
(
1/r(s)

)
= ∞. (7)

Furthermore, assume that there exists a positive sequence b(t) and a double pos-
itive sequence H(t, s) such that

H(t, t) = 0 for t ≥ t0,

H(t, s) > 0 for t > s ≥ t0

and

ΔsH(t, s) = H(t, s+ 1)−H(t, s) ≤ 0 for t > s ≥ t0.

If

lim sup
t→∞

t−1∑
s=t1

(
H(t, s)b(s)p(s)− h2

+(t, s)b(s+ 1)r(s+ 1)

4k1k2H(t, s)Γ(1 − α)

)
= ∞, (8)

where

h+(t, s) =
H(t, s)Δb+(s)

b(s+ 1)
+ΔsH(t, s) and Δb+(s) = max

{
Δb(s), 0

}
,

then all solutions of (1) are oscillatory.

P r o o f. Assume, for the sake of contradiction, that x(t) is a nonoscillatory so-
lution of (1). Without loss of generality, we can assume that x(t) is an eventually
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positive sequence of (1). Proceeding as in Theorem 3.1, we arrive at equation (6).
Multiplying (6) by H(t, s) and summing from t1 to t− 1, we get

t−1∑
s=t1

H(t, s)k1b(s)p(s)

≤
t−1∑
s=t1

(
H(t, s)Δb+(s)w(s+ 1)

b(s+ 1)
− H(t, s)Γ(1 − α)k2w

2(s+ 1)

b(s+ 1)r(s+ 1)

)

−
t−1∑
s=t1

H(t, s)Δw(s).

Using the summation by parts formula, we have that

−
t−1∑
s=t1

H(t, s)Δw(s) = −[H(t, s)w(s)
]t
t1
+

t−1∑
s=t1

w(s+ 1)ΔsH(t, s)

= H(t, t1)w(t1) +

t−1∑
s=t1

w(s+ 1)ΔsH(t, s),

which implies that

t−1∑
s=t1

H(t, s)k1b(s)p(s)

≤
t−1∑
s=t1

(
H(t, s)Δb+(s)w(s+ 1)

b(s+ 1)
− H(t, s)Γ(1 − α)k2w

2(s+ 1)

b(s+ 1)r(s+ 1)

)

+H(t, t1)w(t1) +

t−1∑
s=t1

w(s+ 1)ΔsH(t, s)

=

t−1∑
s=t1

(
H(t, s)Δb+(s)

b(s+ 1)
+ΔsH(t, s)

)
w(s+ 1)

−
t−1∑
s=t1

H(t, s)Γ(1 − α)k2w
2(s+ 1)

b(s+ 1)r(s+ 1)
+H(t, t1)w(t1)

=

t−1∑
s=t1

(
h+(t, s)w(s+ 1)− H(t, s)Γ(1 − α)k2w

2(s+ 1)

b(s+ 1)r(s+ 1)

)

+H(t, t1)w(t1).
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Set

X =

√
H(t, s)Γ(1 − α)k2
b(s+ 1)r(s+ 1)

w(s+ 1) and Y =
h+(t, s)

2
√

H(t,s)Γ(1−α)k2

b(s+1)r(s+1)

.

Using Lemma 2.2 (Hardy type inequality) with m = 2, we have that

2

√
H(t, s)Γ(1 − α)k2
b(s+ 1)r(s+ 1)

w(s+ 1)
h+(t, s)

2
√

H(t,s)Γ(1−α)k2

b(s+1)r(s+1)

−H(t, s)Γ(1 − α)k2w
2(s+ 1)

b(s+ 1)r(s+ 1)
≤ (h+(t, s))

2b(s+ 1)r(s+ 1)

4H(t, s)Γ(1− α)k2
,

or
t−1∑
s=t1

H(t, s)k1b(s)p(s) ≤
t−1∑
s=t1

(
(h+(t, s))

2b(s+ 1)r(s+ 1)

4H(t, s)Γ(1 − α)k2

)
+H(t, t1)w(t1),

i.e.,

t−1∑
s=t1

(
H(t, s)b(s)p(s)− k−1

1 (h+(t, s))
2b(s+ 1)r(s+ 1)

4H(t, s)Γ(1− α)k2

)
≤ k−1

1 H(t, t1)w(t1)

≤ k−1
1 H(t, t0)w(t1).

Since 0 < H(t, s) ≤ H(t, t0) for t > s ≥ t0, then we have 0 < H(t,s)
H(t,t0)

≤ 1 for

t > s ≥ t0. Hence, it follows that

1

H(t, t0)

t−1∑
s=t0

(
H(t, s)b(s)p(s)− k−1

1 (h+(t, s))
2b(s+ 1)r(s+ 1)

4H(t, s)Γ(1 − α)k2

)

=
1

H(t, t0)

t1−1∑
s=t0

(
H(t, s)b(s)p(s)− k−1

1 (h+(t, s))
2b(s+ 1)r(s+ 1)

4H(t, s)Γ(1 − α)k2

)

+
1

H(t, t0)

t−1∑
s=t1

(
H(t, s)b(s)p(s)− k−1

1 (h+(t, s))
2b(s+ 1)r(s+ 1)

4H(t, s)Γ(1− α)k2

)

≤ 1

H(t, t0)

t1−1∑
s=t0

(
H(t, s)b(s)p(s)− k−1

1 (h+(t, s))
2b(s+ 1)r(s+ 1)

4H(t, s)Γ(1 − α)k2

)
+ k−1

1 w(t1)

≤ 1

H(t, t0)

t1−1∑
s=t0

(
H(t, s)b(s)p(s)

)
+ k−1

1 w(t1)

≤
t1−1∑
s=t0

(
b(s)p(s)

)
+ k−1

1 w(t1).
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Letting t → ∞, we have

lim sup
t→∞

1

H(t, t0)

t−1∑
s=t0

(
H(t, s)b(s)p(s)− (h+(t, s))

2b(s+ 1)r(s+ 1)

4k1k2H(t, s)Γ(1 − α)

)

≤
t1−1∑
s=t0

(
b(s)p(s)

)
+ k−1

1 w(t1) < ∞,

which contradicts (8). The proof of the theorem is complete. �

4. Examples

Example 4.1. Consider the fractional difference equation

Δ
(
tg
(
Δ0.5x(t)

))
+ tf

(
t−0.5∑
s=t0

(t− s− 1)(−0.5)x(s)

)
= 0 for t ∈ Nt0+0.5, (9)

where α = 0.5, r(t) = t, p(t) = t, b(t) = 1
t2 , t0 = 2, k1 = 1, k2 = 1, g(x) = x and

f(x) = x. It is easy to see that (H1) and (H2) hold. Then we have

∞∑
s=2

g

(
1

r(s)

)
=

∞∑
s=2

1

r(s)
=

∞∑
s=2

1

s
= ∞.

Now

lim sup
t→∞

t−1∑
s=t1

[
k1b(s)p(s)− 1

k2
R(s)

]
=

lim sup
t→∞

t−1∑
s=t1

(
1

s
− (Δb+(s))

2(s+ 1)3

4
√
π

)
.

Since Δb(s) < 0, therefore we can choose Δb+(s) = 0. Then we have

lim sup
t→∞

t−1∑
s=t1

[
k1b(s)p(s)− 1

k2
R(s)

]
=

lim sup
t→∞

t−1∑
s=t1

1

s
= ∞,

that is condition (5) of Theorem 3.1 is satisfied. Therefore, all solutions of (9)
are oscillatory.
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Example 4.2. Consider the fractional difference equation

Δ
(
tg
(
Δ0.5x(t)

))
+t1/2f

(
t−0.5∑
s=t0

(t−s−1)(−0.5)x(s)

)
=0 for t ∈ Nt0+0.5, (10)

where α = 0.5, r(t) = t, p(t) = t1/2, b(t) = 1
t3/2

, t0 = 2, k1 = 1, k2 = 1, g(x) = x
and f(x) = x. Clearly conditions (H1) and H(2) hold. We apply Theorem 3.1
with Δb+(s) = 0, we obtain

∞∑
s=2

g

(
1

r(s)

)
=

∞∑
s=2

1

r(s)
=

∞∑
s=2

1

s
= ∞.

Hence,

lim sup
t→∞

t−1∑
s=t1

[
k1b(s)p(s)− 1

k2
R(s)

]
=

lim sup
t→∞

t−1∑
s=t1

(
s1/2

s3/2
− (Δb+(s))

2
√
s+ 1)

4
√
π

)

and therefore

lim sup
t→∞

t−1∑
s=t1

[
k1b(s)p(s)− 1

k2
R(s)

]
=

lim sup
t→∞

t−1∑
s=t1

1

s
= ∞.

That is, condition (5) of Theorem 3.1 is satisfied. Therefore all solutions of (10)
are oscillatory.

Example 4.3. Consider the fractional difference equation

Δ
(
tg
(
Δ0.5x(t)

))
+ tf

(
t−0.5∑
s=t0

(t− s− 1)(−0.5)x(s)

)
= 0 for t ∈ Nt0+0.5, (11)

where α = 0.5, r(t) = t, p(t) = t, b(t) = 1
t3 , t0 = 2, H(t, s) = t + s,

ΔsH(t, s) = −1, h+(t, s) = −1, Δb+(s) = 0, k1 = 1, k2 = 1, g(x) = x and
f(x) = x. Clearly, conditions (H1) and H(2) hold. Then we have

∞∑
s=2

g

(
1

r(s)

)
=

∞∑
s=2

1

r(s)
=

∞∑
s=2

1

s
= ∞.
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Thus, the condition (8) reads

lim sup
t→∞

t−1∑
s=t1

[
H(t, s)b(s)p(s)− h2

+(t, s)b(s+ 1)r(s+ 1)

4k1k2H(t, s)Γ(1 − α)

]
=

lim sup
t→∞

t−1∑
s=t1

[
t

s2
+

1

s
− 1

4
√
π(t− s)(s+ 1)2

]
= ∞.

That is, all the conditions of the Theorem 3.2 are satisfied. Therefore, all solu-
tions of (11) are oscillatory.
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