Mathematical Publications
DOI: 10.2478/tmmp-2018-0011
Tatra Mt. Math. Publ. 71 (2018), 123-137

EXISTENCE OF POSITIVE BOUNDED SOLUTIONS OF SYSTEM OF THREE DYNAMIC EQUATIONS WITH NEUTRAL TERM ON TIME SCALES

Urszula Ostaszewska - Ewa Schmeidel - Ma£gorzata Zdanowicz
University of Bialystok, Białystok, POLAND

ABSTRACT. In this paper the system of three dynamic equations with neutral term in the following form

$$
\left\{\begin{array}{l}
\left(x(t)+p(t) x\left(u_{1}(t)\right)\right)^{\Delta}=a(t) f\left(y\left(u_{2}(t)\right)\right), \\
y^{\Delta}(t)=b(t) g\left(z\left(u_{3}(t)\right)\right), \\
z^{\Delta}(t)=c(t) h\left(x\left(u_{4}(t)\right)\right)
\end{array}\right.
$$

on time scales is considered. The aim of this paper is to present sufficient conditions for the existence of positive bounded solutions of the considered system for $0<p(t) \leq$ const <1. The main tool of the proof of presented here result is Krasnoselskii's fixed point theorem. Also, the useful generalization of the Arzelá-Ascoli theorem on time scales to the three-dimensional case is proved.

1. Introduction

Consider a nonlinear dynamic system of three equations of the form

$$
\left\{\begin{array}{l}
\left(x(t)+p(t) x\left(u_{1}(t)\right)\right)^{\Delta}=a(t) f\left(y\left(u_{2}(t)\right)\right) \tag{1}\\
y^{\Delta}(t)=b(t) g\left(z\left(u_{3}(t)\right)\right) \\
z^{\Delta}(t)=c(t) h\left(x\left(u_{4}(t)\right)\right)
\end{array}\right.
$$

on a time scale \mathbb{T}.
Throughout this paper $x, y, z: \mathbb{T} \rightarrow \mathbb{R}$ are unknown functions and p, a, b, c : $\mathbb{T} \rightarrow \mathbb{R}, f, g, h: \mathbb{R} \rightarrow \mathbb{R}$. Moreover, $u_{i}: \mathbb{T} \rightarrow \mathbb{T}$ is such that $\lim _{t \rightarrow \infty} u_{i}(t)=\infty$ for $i=1,2,3,4$. Here \mathbb{R} is the set of real numbers and \mathbb{T} is an arbitrary time scale.

The time scale theory was found promising because it demonstrates the interplay between the theories of continuous-time and discrete-time systems

[^0](see [2], 3]), and from twenty years attracting attention of many researchers.

Particularly, the system of dynamic equations on time scales was studied by many authors. For example, Taousser, Defoort and Djemai in [10] deal with the stability analysis of a class of uncertain switched systems on non-uniform time domains. The classical results on stabilization of nonlinear continuous-time and discrete-time systems are extended to systems on arbitrary time scales with bounded graininess function in [1] by Bartosiewicz and Piotrowska. A necessary and sufficient condition for the exponential stability of time-invariant linear systems on time scales in terms of the eigenvalues of the system matrix is found by Pötzsche, Siegmund and Wirth in [8]. In [12], Zhu and W a g considered the existence of nonoscillatory solutions to neutral dynamic equations on time scales. In the discrete case, the existence of a bounded nonoscillatory solution of nonlinear neutral type difference systems has been studied in [9] and [11]. In this paper the authors improved and generalised for arbitrary time scales some results obtained by Migda, Schmeidel and Zdanowicz in [7] in discrete case.

Let us recall some basic definitions and facts related to time scales.
Definition 1 ([2]). A time scale \mathbb{T} is an arbitrary nonempty closed subset of the real numbers.

The mapping $\sigma: \mathbb{T} \rightarrow \mathbb{T}$, defined by $\sigma(t)=\inf \{s \in \mathbb{T}: s>t\}$ with $\inf \emptyset=\sup \mathbb{T}$ is called the forward jump operator. Similarly, we define the backward jump operator $\rho: \mathbb{T} \rightarrow \mathbb{T}$, given by $\rho(t)=\sup \{s \in \mathbb{T}: s<t\}$ with $\sup \emptyset=\inf \mathbb{T}$. The following classification of points is used within the theory: a point $t \in \mathbb{T}$ is called right-dense, right-scattered, left-dense and left-scattered if $\sigma(t)=t$ (for $t<\sup \mathbb{T}$), $\sigma(t)>t, \rho(t)=t($ for $t>\inf \mathbb{T})$ and $\rho(t)<t$, respectively. We say that t is isolated if $\rho(t)<t<\sigma(t)$, and that t is dense if $\rho(t)=t=\sigma(t)$. The function $\mu: \mathbb{T} \rightarrow[0, \infty)$ defined by $\mu(t)=\sigma(t)-t$ is called the graininess function. The delta (or Hilger) derivative of $f: \mathbb{T} \rightarrow \mathbb{R}$ at a point $t \in \mathbb{T}^{\kappa}$, where

$$
\mathbb{T}^{\kappa}:= \begin{cases}\mathbb{T} \backslash(\rho(\sup \mathbb{T}), \sup \mathbb{T}] & \text { if } \sup \mathbb{T}<\infty \\ \mathbb{T} & \text { if } \sup \mathbb{T}=\infty\end{cases}
$$

is defined in the following way.
Definition 2 ([2]). The delta derivative of function f at a point t, denoted by $f^{\Delta}(t)$, is the number (provided it exists) with the property that given any $\varepsilon>0$, there is a neighborhood U of t (i.e., $U=(t-\delta ; t+\delta) \cap \mathbb{T}$ for some $\delta>0$) such that

$$
\left|(f(\sigma(t))-f(s))-f^{\Delta}(t)(\sigma(t)-s)\right| \leq \varepsilon|\sigma(t)-s| \quad \text { for all } \quad s \in U
$$

EXISTENCE OF POSITIVE BOUNDED SOLUTIONS

We say that a function f is delta (or Hilger) differentiable on \mathbb{T}^{κ} provided $f^{\Delta}(t)$ exists for all $t \in \mathbb{T}^{\kappa}$. The function $f^{\Delta}: \mathbb{T}^{\kappa} \rightarrow \mathbb{R}$ is then called the (delta) derivative of f on \mathbb{T}^{κ}.

Definition 3 ([2]). A function $f: \mathbb{T} \rightarrow \mathbb{R}$ is called regulated provided its right--sided limits exist (finite) at right-dense points in \mathbb{T} and its left-sided limits exist (finite) at left-dense points in \mathbb{T}. A function $f: \mathbb{T} \rightarrow \mathbb{R}$ is called rd-continuous provided it is continuous at right-dense points in \mathbb{T} and its left-side limits exist (finite) at left-dense points in \mathbb{T}.

Definition 4 ([2]). Assume $f: \mathbb{T} \rightarrow \mathbb{R}$ is a regulated function. We define the indefinite integral of a regulated function f by $\int f(t) \Delta t=F(t)+C$, where C is an arbitrary constant and F is a pre-derivative of f. We define the Cauchy integral by $\int_{a}^{b} f(t) \Delta t=F(b)-F(a)$ for all $a, b \in \mathbb{T}$.

We are interested in the nonoscillatory behaviour of system (11), that is why the general assumption on the time scale \mathbb{T} is the following inf $\mathbb{T}=T_{0}$ and $\sup \mathbb{T}=\infty$.

By a solution of (11), we mean a sequence $(X(t))=[x(t), y(t), z(t)]^{T}$ of delta differentiable functions which are defined on \mathbb{T} and satisfy (11) for $t \geq T_{1} \geq T_{0}$. A function φ is called eventually positive (or eventually negative) if there exists $T \in \mathbb{T}$ such that $\varphi(t)>0($ or $\varphi(t)<0)$ for all $t \geq T$ in \mathbb{T}. If the function φ is either eventually positive or eventually negative we call it nonoscillatory. A solution X of system (11) is called nonoscillatory if all its components, i.e., x, y, z are nonoscillatory.

2. Preliminaries

For $T_{1}, T_{2} \in \mathbb{T}$, let

$$
\left[T_{1}, \infty\right)_{\mathbb{T}}=\left\{t \in \mathbb{T}: t \geq T_{1}\right\} \quad \text { and } \quad\left[T_{1}, T_{2}\right]_{\mathbb{T}}=\left\{t \in \mathbb{T}: T_{1} \leq t \leq T_{2}\right\}
$$

By $C(A, B), C_{r d}(A, B)$ we denote the set of all continuous functions mapping A to B, the set of all rd-continuous functions mapping A to B, respectively.

For elements of \mathbb{R}^{3} the symbol $|\cdot|$ stands for the maximum norm. By $\mathcal{B}(\mathbb{T})$ we denote the Banach space of all triples of bounded and continuous functions with the supremum norm defined on time scale \mathbb{T}, i.e.,

$$
\begin{equation*}
\mathcal{B}(\mathbb{T})=\left\{X: X \in C\left(\left[T_{0}, \infty\right)_{\mathbb{T}}, \mathbb{R}^{3}\right), \text { and }\|X\|=\sup _{t \in \mathbb{T}}|X(t)|<\infty\right\} \tag{2}
\end{equation*}
$$

Let Ω be a subset of $\mathcal{B}(\mathbb{T})$.

Definition 5. Ω is called uniformly Cauchy if for every $\varepsilon>0$ exists $T_{1} \in$ $\left[T_{0}, \infty\right)_{\mathbb{T}}$ such that for any $X \in \Omega$

$$
\left|X\left(t_{1}\right)-X\left(t_{2}\right)\right|<\varepsilon \quad \text { for all } \quad t_{1}, t_{2} \in\left[T_{1}, \infty\right)_{\mathbb{T}}
$$

Definition 6. Ω is called equi-continuous on $[a, b]_{\mathbb{T}}$ if for every $\varepsilon>0$, there exists $\delta>0$ such that for any $X \in \Omega$ and $t_{1}, t_{2} \in[a, b]_{\mathbb{T}}$ with $\left|t_{1}-t_{2}\right|<\delta$,

$$
\left|X\left(t_{1}\right)-X\left(t_{2}\right)\right|<\varepsilon .
$$

The analogue of the Arzelá-Ascoli theorem on time scales was proved by Zhu and Wang in [12]. We need the generalization of this theorem to the three-dimensional case.

Lemma 1. Assume that $\Omega \subset \mathcal{B}(\mathbb{T})$ is bounded and uniformly Cauchy. Moreover, assume that Ω is equi-continuous on $\left[T_{0}, T_{1}\right]_{\mathbb{T}}$ for any $T_{1} \in\left[T_{0}, \infty\right)_{\mathbb{T}}$. Then Ω is relatively compact.

Proof. Since Ω is uniformly Cauchy we have that for any $\varepsilon>0$ there exists $T_{1} \in\left[T_{0}, \infty\right)_{\mathbb{T}}$ such that for any $X \in \Omega$

$$
\begin{equation*}
\left|X\left(t_{1}\right)-X\left(t_{2}\right)\right|<\frac{\varepsilon}{3}, \quad t_{1}, t_{2} \in\left[T_{1}, \infty\right)_{\mathbb{T}} \tag{3}
\end{equation*}
$$

By the assumption of boundness there exists $\alpha>0$ such that $\|X\| \leq \alpha$ for every $X \in \Omega$. We can choose the sequence of $N_{1}+1$ real numbers $\beta_{0}, \beta_{1}, \ldots, \beta_{N_{1}}$ such that $-\alpha=\beta_{0}<\beta_{1}<\cdots<\beta_{N_{1}}=\alpha$ and

$$
\begin{equation*}
\left|\beta_{i+1}-\beta_{i}\right|<\frac{\varepsilon}{3}, \quad i=0,1, \ldots, N_{1}-1 \tag{4}
\end{equation*}
$$

The equi-continuity of Ω on $\left[T_{0}, T_{1}\right]_{\mathbb{T}}$ implies that for the chosen $\varepsilon>0$ there exists $\delta>0$ such that for any $X \in \Omega$

$$
\begin{equation*}
|X(t)-X(s)|<\frac{\varepsilon}{3} \quad \text { if }|t-s| \leq \delta, \quad s, t \in\left[T_{0}, T_{1}\right]_{\mathbb{T}} \tag{5}
\end{equation*}
$$

Obviously, we can choose N_{2} real numbers from the interval $\left[T_{0}, T_{1}\right]$ so that $T_{0}=t_{1}<t_{2}<\cdots<t_{N_{2}}=T_{1}$ and

$$
\begin{equation*}
\left|t_{i+1}-t_{i}\right| \leq \delta, \quad i=1,2, \ldots, N_{2}-1 \tag{6}
\end{equation*}
$$

Now, we construct a continuous mapping class $\mathcal{U} \subset C\left(\left[T_{0}, \infty\right)_{\mathbb{T}}, \mathbb{R}^{3}\right)$. For each $k \in\{1,2,3\}, i \in\left\{1,2, \ldots, N_{2}-1\right\}$ and $j \in\left\{1,2, \ldots, N_{1}-1\right\}$ we define a function $u_{i j}^{k}$ on $\left[t_{i}, t_{i+1}\right]$ as follows

$$
u_{i j}^{(k)}(t)=\beta_{j}+\frac{\beta_{j+1}-\beta_{j}}{t_{i+1}-t_{i}}\left(t-t_{i}\right), \quad t \in\left[t_{i}, t_{i+1}\right]
$$

or

$$
u_{i j}^{(k)}(t)=\beta_{j+1}+\frac{\beta_{j}-\beta_{j+1}}{t_{i+1}-t_{i}}\left(t-t_{i}\right), \quad t \in\left[t_{i}, t_{i+1}\right] .
$$

EXISTENCE OF POSITIVE BOUNDED SOLUTIONS

Observe that function $u_{i j}^{(k)}$ connects with the line points $\left(t_{i}, \beta_{j}\right)$ and $\left(t_{i+1}, \beta_{j+1}\right)$ or $\left(t_{i}, \beta_{j+1}\right)$ and $\left(t_{i+1}, \beta_{j}\right)$ being opposite vertices of the rectangle domain: $t_{i} \leq t \leq t_{i+1}$ and $\beta_{j} \leq \beta \leq \beta_{j+1}$. Let \mathcal{U}_{k} be the set of all continuous functions $u^{(k)}$ on $\left[T_{0}, T_{1}\right]$ connecting functions $u_{i j}^{(k)}$ as above from $\left[t_{1}, t_{2}\right]$ to $\left[t_{N_{2}-1}, t_{N_{2}}\right]$. Note that each \mathcal{U}_{k} is a finite set for any fixed numbers N_{1} and N_{2}. Every function $u^{(k)} \in \mathcal{U}_{k}$ we extend to the function $\bar{u}^{(k)}$ defined on the whole $\left[T_{0}, \infty\right)_{\mathbb{T}}$ in the following way

$$
\bar{u}^{(k)}(t)= \begin{cases}u^{(k)}(t), & t \in\left[T_{0}, T_{1}\right]_{\mathbb{T}} \\ u^{(k)}\left(T_{1}\right), & t \in\left[T_{1}, \infty\right)_{\mathbb{T}}\end{cases}
$$

Let \mathcal{U} be the set of all possible triples $U(t)=\left[\bar{u}^{(1)}(t), \bar{u}^{(2)}(t), \bar{u}^{(3)}(t)\right]^{T}$. Clearly, \mathcal{U} is finite since \mathcal{U}_{k} is a finite set for $k=1,2,3$. We will show that \mathcal{U} is a finite ε-net for Ω. Since inequalities (4) and (5) and the definition of functions $\bar{u}^{(k)}$ for any $X=[x, y, z]^{T} \in \Omega$ we can choose $U=\left[\bar{u}^{(1)}, \bar{u}^{(2)}, \bar{u}^{(3)}\right]^{T} \in \mathcal{U}$ such that

$$
\begin{equation*}
\left|\bar{u}^{(1)}(t)-x(t)\right|<\frac{\varepsilon}{3}, \quad\left|\bar{u}^{(2)}(t)-y(t)\right|<\frac{\varepsilon}{3}, \quad\left|\bar{u}^{(3)}(t)-z(t)\right|<\frac{\varepsilon}{3} \tag{7}
\end{equation*}
$$

for any $t \in\left[T_{0}, T_{1}\right]_{\mathbb{T}}$, so on the interval $\left[T_{0}, T_{1}\right]_{\mathbb{T}}$ we have

$$
\begin{equation*}
|U(t)-X(t)|<\frac{\varepsilon}{3} \tag{8}
\end{equation*}
$$

In case when $t \in\left[T_{1}, \infty\right)_{\mathbb{T}}$, from (3) and (7), we obtain

$$
\left|\bar{u}^{(1)}(t)-x(t)\right|=\left|u^{(1)}\left(T_{1}\right)-x(t)\right| \leq\left|x\left(T_{1}\right)-x(t)\right|+\left|u^{(1)}\left(T_{1}\right)-x\left(T_{1}\right)\right|<\frac{2 \varepsilon}{3},
$$

and the same arguments give us

$$
\left|\bar{u}^{(2)}(t)-y(t)\right|<\frac{2 \varepsilon}{3} \quad \text { and } \quad\left|\bar{u}^{(3)}(t)-z(t)\right|<\frac{2 \varepsilon}{3} .
$$

This means that for $t \in\left[T_{1}, \infty\right)_{\mathbb{T}}$ we have

$$
\begin{equation*}
|U(t)-X(t)|<\frac{2 \varepsilon}{3} \tag{9}
\end{equation*}
$$

Finally, since (8) and (9) we conclude that

$$
\|U-X\|=\sup _{t \in\left[T_{0}, \infty\right)_{\mathbb{T}}}|U(t)-X(t)| \leq \frac{2 \varepsilon}{3}
$$

Thus \mathcal{U} is a finite ε-net for Ω and this completes the proof of relative compactness of Ω.

We also recall Krasnoselskii's fixed point theorem which will be crucial to establish the existence of nonoscillatory solutions for (1).

Theorem 1 ([5]). Let B be a Banach space, let Ω be a bounded, convex and closed subset of B and let F, G be maps of Ω into B such that
(i) $F X+G Y \in \Omega$ for any $X, Y \in \Omega$,
(ii) F is a contraction,
(iii) G is completely continuous.

Then the equation $F X+G X=X$ has a solution in Ω.

3. Main results

We will assume in (1) that
(A1) $f, g, h \in C(\mathbb{R}, \mathbb{R})$,
(A2) $a, b, c \in C_{r d}(\mathbb{T}, \mathbb{R})$ and

$$
\int_{T_{0}}^{\infty}|a(s)| \Delta s<\infty, \quad \int_{T_{0}}^{\infty}|b(s)| \Delta s<\infty, \quad \text { and } \quad \int_{T_{0}}^{\infty}|c(s)| \Delta s<\infty,
$$

(A3) $u_{i} \in C_{r d}(\mathbb{T}, \mathbb{T})$ and $\lim _{t \rightarrow \infty} u_{i}(t)=\infty$ for $i=1,2,3,4$,
(A4) $p: \mathbb{T} \rightarrow \mathbb{R}$ is delta differentiable.
Using Krasnoselskii's fixed point theorem we will prove the following
Theorem 2. Assume that conditions (A1)-(A4) hold. If there exists a positive real number c_{p} such that

$$
\begin{equation*}
0<p(t) \leq c_{p}<1 \quad \text { for any } \quad t \in \mathbb{T} \tag{A5}
\end{equation*}
$$

then system (1) has a positive bounded solution.
Proof. For the fixed positive real number r we define set

$$
\Omega=\{X \in \mathcal{B}(\mathbb{T}): x(t), y(t), z(t) \in I, t \in \mathbb{T}\}
$$

where $I=\left[\frac{1}{3}\left(1-c_{p}\right) r, r\right]$. Ω is bounded closed convex subset of the Banach space $\mathcal{B}(\mathbb{T})$. Since condition (A1) is satisfied, we can set

$$
M=\max \{|f(x)|,|g(x)|,|h(x)|: x \in I\}
$$

From (A2), there exists $T_{1} \in \mathbb{T}$ such that

$$
\int_{T_{1}}^{\infty}|a(s)| \Delta s \leq \frac{\left(1-c_{p}\right) r}{3 M}, \int_{T_{1}}^{\infty}|b(s)| \Delta s \leq \frac{\left(1-c_{p}\right) r}{3 M}, \int_{T_{1}}^{\infty}|c(s)| \Delta s \leq \frac{\left(1-c_{p}\right) r}{3 M} .
$$

Next, we define the maps $F, G: \Omega \rightarrow B(\mathbb{T})$ where

$$
F=\left[\begin{array}{l}
F_{1} \\
F_{2} \\
F_{3}
\end{array}\right], \quad G=\left[\begin{array}{l}
G_{1} \\
G_{2} \\
G_{3}
\end{array}\right]
$$

EXISTENCE OF POSITIVE BOUNDED SOLUTIONS

$$
\begin{align*}
& (F X)(t)=\left[\begin{array}{c}
-p(t) x\left(u_{1}(t)\right)+\frac{\left(2+c_{p}\right) r}{3} \\
\frac{2\left(1-c_{p}\right) r}{3} \\
\frac{2\left(1-c_{p}\right) r}{3}
\end{array}\right] \text { for } t \geq T_{1}, \\
& (F X)(t)=(F X)\left(T_{1}\right) \quad \text { for } \quad T_{0} \leq t<T_{1}, \\
& (G X)(t)=\left[\begin{array}{l}
-\int_{t}^{\infty} a(s) f\left(y\left(u_{2}(s)\right)\right) \Delta s \\
-\int_{t}^{\infty} b(s) g\left(z\left(u_{3}(s)\right)\right) \Delta s \\
-\int_{t}^{\infty} c(s) h\left(x\left(u_{4}(s)\right)\right) \Delta s
\end{array}\right] \text { for } t \geq T_{1} \tag{10}
\end{align*}
$$

and

$$
(G X)(t)=(G X)\left(T_{1}\right) \quad \text { for } \quad T_{0} \leq t<T_{1}
$$

We will show that F and G satisfy the conditions of the Theorem 1 First we show that for any $X, \bar{X} \in \Omega$ we have that $F X+G \bar{X} \in \Omega$. For $t \geq T_{1}$ we get the following upper and lower estimations

$$
\begin{aligned}
\left(F_{1} X\right)(t)+\left(G_{1} \bar{X}\right)(t) & =-p(t) x\left(u_{1}(t)\right)+\frac{\left(2+c_{p}\right) r}{3}-\int_{t}^{\infty} a(s) f\left(\bar{y}\left(u_{2}(s)\right)\right) \Delta s \\
& \leq \frac{\left(2+c_{p}\right) r}{3}+\int_{t}^{\infty}|a(s)|\left|f\left(\bar{y}\left(u_{2}(s)\right)\right)\right| \Delta s \\
& \leq \frac{\left(2+c_{p}\right) r}{3}+M \int_{t}^{\infty}|a(s)| \Delta s \\
& \leq \frac{2}{3} r+\frac{1}{3} c_{p} r+M \cdot \frac{\left(1-c_{p}\right) r}{3 M}=r
\end{aligned}
$$

$$
\begin{aligned}
\left(F_{1} X\right)(t)+\left(G_{1} \bar{X}\right)(t) & =-p(t) x\left(u_{1}(t)\right)+\frac{\left(2+c_{p}\right) r}{3}-\int_{t}^{\infty} a(s) f\left(\bar{y}\left(u_{2}(s)\right)\right) \Delta s \\
& \geq \frac{\left(2+c_{p}\right) r}{3}-\int_{t}^{\infty}|a(s)|\left|f\left(\bar{y}\left(u_{2}(s)\right)\right)\right| \Delta s-p(t) x\left(u_{1}(t)\right) \\
& \geq \frac{2}{3} r+\frac{1}{3} c_{p} r-M \cdot \frac{\left(1-c_{p}\right) r}{3 M}-c_{p} r \\
& =\frac{2}{3} r+\frac{1}{3} c_{p} r-\frac{1}{3} r+\frac{1}{3} c_{p} r-c_{p} r \\
& =\frac{1}{3}\left(1-c_{p}\right) r
\end{aligned}
$$

Therefore $\left(F_{1} X\right)(t)+\left(G_{1} \bar{X}\right)(t) \in I$ for all $t \in \mathbb{T}$ and any $X, \bar{X} \in \Omega$.
Below we present reasoning for maps F_{2} and G_{2}, but the same conclusions can be drawn for F_{3} and G_{3}.

$$
\begin{aligned}
\left(F_{2} X\right)(t)+\left(G_{2} \bar{X}\right)(t) & =\frac{2\left(1-c_{p}\right) r}{3}-\int_{t}^{\infty} b(s) g\left(\bar{z}\left(u_{3}(s)\right)\right) \Delta s \\
& \leq \frac{2\left(1-c_{p}\right) r}{3}+\int_{t}^{\infty}|b(s)|\left|g\left(\bar{z}\left(u_{3}(s)\right)\right)\right| \Delta s \\
& \leq \frac{2}{3} r-\frac{2}{3} c_{p} r+M \cdot \frac{\left(1-c_{p}\right) r}{3 M}=\left(1-c_{p}\right) r \leq r \\
\left(F_{2} X\right)(n)+\left(T_{2} \bar{X}\right)(n) & =\frac{2\left(1-c_{p}\right) r}{3}-\int_{t}^{\infty} b(s) g\left(\bar{z}\left(u_{3}(s)\right)\right) \Delta s \\
& \geq \frac{2\left(1-c_{p}\right) r}{3}-\int_{t}^{\infty}|b(s)|\left|g\left(\bar{z}\left(u_{3}(s)\right)\right)\right| \Delta s \\
& \geq \frac{2}{3} r-\frac{2}{3} c_{p} r-M \cdot \frac{\left(1-c_{p}\right) r}{3 M}=\frac{1}{3}\left(1-c_{p}\right) r
\end{aligned}
$$

Hence for any $X, \bar{X} \in \Omega$ we have that $F X+G \bar{X} \in \Omega$.

EXISTENCE OF POSITIVE BOUNDED SOLUTIONS

The next step is to prove that F is a contraction mapping. It is easy to see that

$$
\begin{aligned}
\left|\left(F_{1} X\right)(t)-\left(F_{1} \bar{X}\right)(t)\right| & \leq p(t)\left|x\left(u_{1}(t)\right)-\bar{x}\left(u_{1}(t)\right)\right| \\
& \leq c_{p}\left|x\left(u_{1}(t)\right)-\bar{x}\left(u_{1}(t)\right)\right| \\
& \leq c_{p} \sup _{t \in \mathbb{T}}\left|x\left(u_{1}(t)\right)-\bar{x}\left(u_{1}(t)\right)\right| \\
& \leq c_{p} \sup _{t \in \mathbb{T}}|x(t)-\bar{x}(t)| \\
\left|\left(F_{2} X\right)(t)-\left(F_{2} \bar{X}\right)(t)\right| & =0, \\
\left|\left(F_{3} X\right)(t)-\left(F_{3} \bar{X}\right)(t)\right| & =0, \quad \text { for } X, \bar{X} \in \Omega \quad \text { and } \quad t \geq T_{1} .
\end{aligned}
$$

Hence

$$
\|F X-F \bar{X}\| \leq c_{p}\|X-\bar{X}\|
$$

where, by (A5), there is $0<c_{p}<1$.
It remains to show that G is a completely continuous mapping. We start it showing that G is continuous. Consider sequence $X_{n}=\left[x_{n}, y_{n}, z_{n}\right]^{T} \in \Omega$ for any $n \in \mathbb{N}$ such that $\left\|X_{n}-X\right\| \rightarrow 0$ as $n \rightarrow \infty$, then $X \in \Omega$ and for any $t \in \mathbb{T}$ we have that $\left|x_{n}(t)-x(t)\right| \rightarrow 0,\left|y_{n}(t)-y(t)\right| \rightarrow 0,\left|z_{n}(t)-z(t)\right| \rightarrow 0$ as $n \rightarrow \infty$. Because f is continuous, then for any $t \in \mathbb{T}$ we have

$$
\begin{equation*}
|a(t)|\left|f\left(y_{n}\left(u_{2}(t)\right)\right)-f\left(y\left(u_{2}(t)\right)\right)\right| \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{11}
\end{equation*}
$$

On the other hand, for $y_{n}(t), y(t) \in I$ we get that

$$
\begin{equation*}
|a(t)|\left|f\left(y_{n}\left(u_{2}(t)\right)\right)-\left(y\left(u_{2}(t)\right)\right)\right| \leq 2 M|a(t)| . \tag{12}
\end{equation*}
$$

From (10) we obtain

$$
\left|\left(G_{1} X_{n}\right)(t)-\left(G_{1} X\right)(t)\right| \leq \int_{t}^{\infty}|a(s)|\left|f\left(y_{n}\left(u_{2}(s)\right)\right)-f\left(y\left(u_{2}(s)\right)\right)\right| \Delta s
$$

for any $t \geq T_{1}$, and

$$
\left|\left(G_{1} X_{n}\right)(t)-\left(G_{1} X\right)(t)\right| \leq \int_{T_{1}}^{\infty}|a(s)|\left|f\left(y_{n}\left(u_{2}(s)\right)\right)-f\left(y\left(u_{2}(s)\right)\right)\right| \Delta s
$$

for $T_{0} \leq t<T_{1}$. Therefore, we can conclude that

$$
\begin{equation*}
\sup _{t \in \mathbb{T}}\left|\left(G_{1} X_{n}\right)(t)-\left(G_{1} X\right)(t)\right| \leq \int_{T_{1}}^{\infty}|a(s)|\left|f\left(y_{n}\left(u_{2}(s)\right)\right)-f\left(y\left(u_{2}(s)\right)\right)\right| \Delta s \tag{13}
\end{equation*}
$$

Since (11), (12) and (13) applying the Lebesgue dominated convergence theorem on time scales for the integral on time scales [4], [6] we obtain

$$
\sup _{t \in \mathbb{T}}\left|\left(G_{1} X_{n}\right)(t)-\left(G_{1} X\right)(t)\right| \rightarrow 0 \quad \text { if } n \rightarrow \infty
$$

Analogously, if $n \rightarrow \infty$, then

$$
\sup _{t \in \mathbb{T}}\left|\left(G_{2} X_{n}\right)(t)-\left(G_{2} X\right)(t)\right| \rightarrow 0 \quad \text { and } \quad \sup _{t \in \mathbb{T}}\left|\left(G_{3} X_{n}\right)(t)-\left(G_{3} X\right)(t)\right| \rightarrow 0
$$

Hence,

$$
\left\|G X_{n}-G X\right\| \rightarrow 0 \quad \text { if } n \rightarrow \infty
$$

It means that G is a continuous mapping on Ω.
To prove that $G \Omega$ is relatively compact it is sufficient to verify that $G \Omega$ satisfies all conditions in the Lemma (1) Obviously $G \Omega$ is a bounded set. Now we will show that it is uniformly Cauchy. Let $X \in \Omega$. Observe that for any given $\varepsilon>0$ by assumptions (A1) and (A2) there exists $T_{2}>T_{1}$ such that for all $t \geq T_{2}$ the following inequality holds

Hence by definition of G,

$$
\int_{t}^{\infty}|a(s)|\left|f\left(y\left(u_{2}(s)\right)\right)\right| \Delta s<\frac{\varepsilon}{2}
$$

$\left|\left(G_{1} X\right)\left(t_{1}\right)-\left(G_{1} X\right)\left(t_{2}\right)\right|=\left|\int_{t_{1}}^{\infty} a(s) f\left(y\left(u_{2}(s)\right)\right) \Delta s-\int_{t_{2}}^{\infty} a(s) f\left(y\left(u_{2}(s)\right)\right) \Delta s\right|<\varepsilon$
for arbitrary $t_{1}, t_{2} \in\left[T_{2}, \infty\right)_{\mathbb{T}}$. Since similar arguments can be apply to G_{2} and G_{3} we conclude that $G \Omega$ is uniformly Cauchy.

Finally, it remains to prove the equi-continuity on $\left[T_{0}, T_{2}\right]_{\mathbb{T}}$ for any $T_{2} \in$ $\left[T_{0}, \infty\right)_{\mathbb{T}}$. Observe that for any $X \in \Omega$ and $t_{1}, t_{2} \in\left[T_{0}, T_{1}\right]_{\mathbb{T}}$

$$
\left|(G X)\left(t_{1}\right)-(G X)\left(t_{2}\right)\right| \equiv 0
$$

that is why we can assume that $T_{2}>T_{1}$. Taking now $t_{1}, t_{2} \in\left[T_{1}, T_{2}\right]_{\mathbb{T}}$ we obtain the following estimation

$$
\begin{aligned}
\left|\left(G_{1} X\right)\left(t_{1}\right)-\left(G_{1} X\right)\left(t_{2}\right)\right| & =\left|\int_{t_{1}}^{\infty} a(s) f\left(y\left(u_{2}(s)\right)\right) \Delta s-\int_{t_{2}}^{\infty} a(s) f\left(y\left(u_{2}(s)\right)\right) \Delta s\right| \\
& \leq M\left|\int_{t_{1}}^{t_{2}} a(s) \Delta s\right|
\end{aligned}
$$

Hence, for any $\varepsilon>0$, there exists

$$
\delta_{1}=\frac{\varepsilon}{M \cdot \max _{t \in\left[T_{1}, T_{2}\right] \mathbb{\mathbb { T }}}|a(t)|}
$$

such that, when $t_{1}, t_{2} \in\left[T_{1}, T_{2}\right]_{\mathbb{T}}$ and $\left|t_{1}-t_{2}\right|<\delta_{1}$, we get that

$$
\left|\left(G_{1} X\right)\left(t_{1}\right)-\left(G_{1} X\right)\left(t_{2}\right)\right|<\varepsilon
$$

EXISTENCE OF POSITIVE BOUNDED SOLUTIONS

Since

$$
\left|(G X)\left(t_{1}\right)-(G X)\left(t_{2}\right)\right| \leq \max \left\{M\left|\int_{t_{1}}^{t_{2}} a(s) \Delta s\right|, M\left|\int_{t_{1}}^{t_{2}} b(s) \Delta s\right|, M\left|\int_{t_{1}}^{t_{2}} c(s) \Delta s\right|\right\}
$$

we obtain the equi-continuity of $G \Omega$ with $\delta=\min \left\{\delta_{1}, \delta_{2}, \delta_{3}\right\}$, where $\delta_{2}=$ $\frac{\varepsilon}{M_{t \in\left[T_{1}, T_{2}\right] \mathbb{T}}|b(t)|}$ and $\delta_{3}=\frac{\varepsilon}{M_{t \in\left[T_{1}, T_{2}\right] \mathbb{T}}|c(t)|}$. Lemma 1 implies that $G \Omega$ is relatively Cauchy. From the above we obtain that G is a completely continuous mapping.

By the Theorem 1, there exists X^{*} such that $F X^{*}+G X^{*}=X^{*}$. We will verify that $X^{*}(t)$ satisfies system (11) for $t \geq T_{1}$. Since $\left(F_{1} X^{*}\right)(t)+\left(G_{1} X^{*}\right)(t)=x^{*}(t)$ we have

$$
\begin{equation*}
-p(t) x^{*}\left(u_{1}(t)\right)+\frac{\left(2+c_{p}\right) r}{3}-\int_{t}^{\infty} a(s) f\left(y^{*}\left(u_{2}(s)\right)\right) \Delta s=x^{*}(t) . \tag{14}
\end{equation*}
$$

After moving the term $-p(t) x^{*}\left(u_{1}(t)\right)$ to the right-hand side of the equation and then applying to its both sides delta differentiation we get

$$
\left(x^{*}(t)+p(t) x^{*}\left(u_{1}(t)\right)\right)^{\Delta}=\left[-\int_{t}^{\infty} a(s) f\left(y^{*}\left(u_{2}(s)\right)\right) \Delta s\right]^{\Delta}
$$

Thus

$$
\begin{equation*}
\left(x^{*}(t)+p(t) x^{*}\left(u_{1}(t)\right)\right)^{\Delta}=a(t) f\left(y^{*}\left(u_{2}(t)\right)\right) \tag{15}
\end{equation*}
$$

since $a(t) f\left(y^{*}\left(u_{2}(t)\right)\right)$, by assumption (A3), as rd-continuous function has its antiderivative.

Let us notice that the Theorem 1 guaranties the equality (14) and by the assumptions (A1)-(A5) we arrive to (15). Hence, we see that $x^{*}(t)$ is not only rd-continuous but, moreover, rd-continuously delta differentiable. Similarly, from equation $\left(F_{2} X^{*}\right)(t)+\left(G_{2} X^{*}\right)(t)=y^{*}(t)$ we get that

$$
\left(y^{*}\right)^{\Delta}(t)=\left[\int_{t}^{\infty} b(s) g\left(z^{*}\left(u_{3}(s)\right)\right) \Delta s\right]^{\Delta}
$$

Again, by assumption (A3), we know that $b(t) g\left(z^{*}\left(u_{3}(t)\right)\right)$ is rd-continuous function and in consequence

$$
\left(y^{*}\right)^{\Delta}(t)=b(t) g\left(z^{*}\left(u_{3}(t)\right)\right)
$$

In the same manner we verify that $\left(F_{3} X^{*}\right)(t)+\left(G_{3} X^{*}\right)(t)=z^{*}(t)$ implies the third equation of (11). Hence X^{*} is the solution of system (11). The proof is complete.

URSZULA OSTASZEWSKA — EWA SCHMEIDEL — MAŁGORZATA ZDANOWICZ

Finally, the above theorem is illustrated with examples in which four different time scales are employed.

Example 1. Let $\mathbb{T}=[5, \infty)$. Consider the following system

$$
\left\{\begin{array}{l}
\left(x(t)+\frac{1}{2 t} x(t-1)\right)^{\Delta}=a(t) y(t-2) \\
y^{\Delta}(t)=b(t)(z(t-1))^{2} \\
z^{\Delta}(t)=c(t) x(t)
\end{array}\right.
$$

with

$$
\begin{aligned}
a(t) & =-\frac{\left(4 t^{2}-6 t+3\right)(t-2)}{2 t^{2}(t-1)^{2}(3 t-5)} \\
b(t) & =-\frac{(t-1)^{4}}{t^{2}\left(3 t^{2}-6 t+4\right)^{2}} \\
c(t) & =-\frac{2}{t^{2}(2 t+1)}
\end{aligned}
$$

It easy to check that all the conditions (A1)-(A5) are satisfied. Here $c_{p}=\frac{1}{10}$. One of the bounded solutions of the above system is

$$
X(t)=\left[2+\frac{1}{t}, 3+\frac{1}{t}, 3+\frac{1}{t^{2}}\right]^{T}
$$

Example 2. Let $\mathbb{T}=\{n: n \geq 3, n \in \mathbb{N}\}$. Consider the following system

$$
\left\{\begin{array}{l}
\left(x(t)+\frac{1}{3 t} x(t-2)\right)^{\Delta}=a(t)\left[(y(t))^{2}+2\right] \\
y^{\Delta}(t)=b(t)(z(t-1))^{3} \\
z^{\Delta}(t)=c(t)(x(t-2))^{2}
\end{array}\right.
$$

with

$$
\begin{aligned}
a(t) & =-\frac{\left(7 t^{2}-17 t+12\right) t}{3(t+1)(t-1)(t-2)\left(6 t^{2}+4 t+1\right)} \\
b(t) & =-\frac{(t-1)^{6}}{t^{4}(t+1)(t-2)^{3}} \\
c(t) & =\frac{(2 t+1)(t-2)^{2}}{t^{4}(t+1)^{2}}
\end{aligned}
$$

Again it is easy to see that all the conditions (A1)-(A4) are satisfied. Also the condition (A5) of the Theorem 2 is satisfied with $c_{p}=\frac{1}{9}$. One of the bounded solutions of the above system is

$$
X(t)=\left[1+\frac{2}{t}, 2+\frac{1}{t}, 1-\frac{1}{t^{2}}\right]^{T}
$$

Example 3. Let $\mathbb{T}=\left\{2^{n}: n \in \mathbb{N}_{0}\right\}$, where \mathbb{N}_{0} is the set of nonnegative integers. Consider the following system

$$
\left\{\begin{array}{l}
\left(x(t)+\frac{1}{2} x(\rho(t))\right)^{\Delta}=a(t) y(\rho(t)) \\
y^{\Delta}(t)=b(t) z(t) \\
z^{\Delta}(t)=c(t)(x(t))^{3}
\end{array}\right.
$$

with

$$
\begin{aligned}
\rho(t) & =\frac{t}{2} \\
a(t) & =-\frac{1}{2 t(t+1)}, \\
b(t) & =-\frac{1}{2 t(t+1)}, \\
c(t) & =-\frac{t}{2(t+1)^{3}} .
\end{aligned}
$$

One can verify that all the conditions (A1)-(A5) are satisfied (condition (A5) with constant $c_{p}=\frac{1}{2}$). One of the bounded solutions of this system is

$$
X(t)=\left[1+\frac{1}{t}, 2+\frac{1}{t}, 1+\frac{1}{t}\right]^{T}
$$

Example 4. Let $\mathbb{T}=P_{1,1}=\bigcup_{k=0}^{\infty}[2 k, 2 k+1]$. Consider the following system

$$
\left\{\begin{array}{l}
\left(x(t)+\frac{1}{3} x(t-2)\right)^{\Delta}=a(t) y(t-2) \\
y^{\Delta}(t)=b(t)(z(t-2))^{2} \\
z^{\Delta}(t)=c(t)(x(t))^{2}
\end{array}\right.
$$

with

$$
\begin{aligned}
a(t) & =-\frac{4\left(t^{2}+7 t+13\right)}{3(2 t+7)(t+3)(t+5)^{2}} \\
b(t) & =-\frac{(t+1)^{2}}{(t+5)^{2}(2 t+3)^{2}} \\
c(t) & =-\frac{(t+5)^{2}}{(t+3)^{2}(4 t+21)^{2}}
\end{aligned}
$$

for $t \in \bigcup_{k=0}^{\infty}[2 k, 2 k+1)$ and

$$
\begin{aligned}
a(t) & =-\frac{2\left(2 t^{2}+16 t+33\right)}{3(2 t+7)(t+6)(t+5)(t+4)} \\
b(t) & =-\frac{(t+1)^{2}}{(t+5)(t+6)(2 t+3)^{2}}, \\
c(t) & =-\frac{(t+5)^{2}}{(t+3)(t+4)(4 t+21)^{2}}
\end{aligned}
$$

for $t \in \bigcup_{k=0}^{\infty}\{2 k+1\}$. One of the bounded solutions of this system is

$$
X(t)=\left[4+\frac{1}{t+5}, 2+\frac{1}{t+5}, 2+\frac{1}{t+3}\right]^{T}
$$

REFERENCES

[1] BARTOSIEWICZ, Z.-PIOTROWSKA, E.: On stabilisability of nonlinear systems on time scales, Internat. J. Control 86 (2013), 139-145.
[2] BOHNER, M.-PETERSON, A.: Dynamic equations on time scales. Birkhäuser, 2001.
[3] _Advances in dynamic equations on time scales. Birkhäuser, 2003.
[4] DENIZ, A.: Measurable theory on time scales. PhD Thesis, The Graduate School of Engineering and sciences of Izmir Institute of Technology, 2007.
[5] ERBE, L. H.-KONG, Q.-ZHANG, B. G.: Oscillation theory for functional differential equations. CRC Press, New York, 1995.
[6] GUSEINOV, G. SH.: Integration on time scales. J. Math. Anal. Appl. 285 (2003), 107-127.
[7] MIGDA, M.-SCHMEIDEL, E.-ZDANOWICZ, M.: Existence of nonoscillatory solutions for system of neutral difference equations, Appl. Anal. Discrete Math. 9 (2015), 271-284.
[8] PÖTZSCHE, C.-SIEGMUND, S.-WIRTH, F.: A spectral characterization of exponential stability for linear time-invariant systems on time scales, Discrete Contin. Dyn. Syst. 9 (2003), 1223-1241.
[9] SCHMEIDEL, E.: Properties of solutions of system of difference equations with neutral term, Funct. Differ. Equ. 18 (2011), 287-296.
[10] TAOUSSER, F. Z.-DEFOORT, M.—DJEMAI, M.: Stability analysis of a class of uncertain switched systems on time scale using Lyapunov functions, Nonlinear Anal.: Hybrid Systems 16 (2015), 13-23.
[11] THANDAPANI, E.-KARUNAKARAN, R.-AROCKIASAMY, I. M.: Bounded nonoscillatory solutions of neutral type difference systems, Electron. J. Qual. Theory Differ Equ., Spec. Ed. I, 25 (2009), 1-8.

EXISTENCE OF POSITIVE BOUNDED SOLUTIONS

[12] ZHU, Z. Q.-WANG, Q. R.: Existence of nonoscillatory solutions to neutral dynamic equations on time scales, J. Math. Anal. Appl. 335 (2007), 751-762.

Received October 19, 2017
Department of Mathematics
Faculty of Mathematics and Informatics
University of Bialystok
K. Ciotkowskiego 1M

PL-15-245 Biatystok
POLAND
E-mail: uostasze@math.uwb.edu.pl eschmeidel@math.uwb.edu.pl mzdan@math.uwb.edu.pl

[^0]: © 2018 Mathematical Institute, Slovak Academy of Sciences.
 2010 Mathematics Subject Classification: 34N05, 39A10, 39A22.
 Keywords: system of difference equation, three-dimensional, neutral type, boundedness, nonoscillatory solution, time scales.

