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ABOUT DISTRIBUTED CONTROL

IN MODEL OF TESTOSTERONE REGULATION

Olga Pinhasov

Ariel University, Ariel, ISRAEL

ABSTRACT. In the paper, stability of integro-differential equation is studied.
The model of testosterone regulation is considered. The model describes an inter-
action of: the concentration of hormone (GnRH) which will be denoted as x1, with
the concentration of the hormone (LH)-x2 and the concentration of testosterone

(Te)-x3 and can be written in the form⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x′
1(t) + b1x1(t) = 0,

x′
2(t) + b2x2(t)− g1x1(t) = 0,

x′
3(t) + b3x3(t)− c1

t∫

0

e−α1(t−s)x2(s) ds = 0, t ≥ 0 .

The values bi, i = 1, 2, 3 correspond to the respective half-life times of GnRH,
LH and Te. The aim of the work is to propose a concept to hold the concentration
of testosterone above a corresponding level. In order to achieve this, distributed

input control in the form of integral term is used.

1. Introduction

The non-autonomous integro-differential equations (IDEs)

y′(t) +A(t)y(t) +

t∫

0

k(t, s)y(s) ds = 0, y(t) ∈ Rn, t ∈ [0,+∞), (1.1)

where A(t) and k(t, s) are n × n matrices with continuous coefficients, model
many processes in applications.
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It was demonstrated in the works [1], [2] that these equations can be used
to model endocrine regulation in correspondence to the delay incurred by trans-
port of hormone molecules from the secretion site to receptors. This is typically
motivated in [3] that signals of the receptors sensitive to the stimulating hor-
mone depends on the mean value of the hormone concentration over a certain
period, rather than the instantaneous value. The affinity of a receptor to bind
a hormone molecule within a given time interval can be defined by the kernel
function k(t, s). Although the distributed input control is a frequently appearing
challenge, only a few papers are devoted to this problem. See, for example, the
recent papers [4], [5]. Noise in the feedback delay control is the main obstacle ap-
pearing in mathematical models with distributed inputs: it is impossible to base
the control on the value of the process X(tj) at a moment tj only, such that
we have to make an average value of the process X(t) at a corresponding neigh-
borhood of tj . Another way for arranging integral delay terms is, for example,
the time required for assimilation of medicine. The integral term with a kernel
defining a weight of every value adopts this role. It points out in [6] that such
models with distributed inputs can appear, for example, in population dynam-
ics, in propellant rocket motors and in networked control systems. IDE (1.1) was
considered in many well-known works [9], [10], [12], [13]. In the paper [7] a new
approach to study of IDE is proposed. The main idea is to reduce the analy-
sis of IDE to one of a corresponding system of ordinary differential equations
(ODE). The number of equations in this new ODE system will be bigger than in
the given one, but analysis will be significantly easier. We demonstrate the use
of this method to the problem of testosterone regulation.

2. Description of model

Consider the model of testosterone regulation integrated into the paper [8]
modeling of a hereditary feedback system and based on the concepts presented
in [10]–[13]. The model describes an interaction of: the concentration of hormone
(GnRH) which will be denoted as x1, with the concentration of the hormone
(LH)-x2 and the concentration of testosterone (Te-x3 and can be written in the
form ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x′
1(t) + b1x1(t) = 0,

x′
2(t) + b2x2(t)− g1x1(t) = 0,

x′
3(t) + b3x3(t)− c1

t∫

0

e−α1(t−s)x2(s) ds = 0, t ≥ 0.

(2.1)

The values bi, i = 1, 2, 3 correspond to the respective half-life times of GnRH,
LH and Te and can be calculated according to the biomedical data for typical
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hormones levels as provided in the literature [8]:

b1 = 0.4, b2 = 0.01, b3 = 0.046, g1 = 2, c1 = 4. (2.2)

We set the control in the form

u(t) = −c2

t∫

0

e−α2(t−s)
{
x3(s)− T (s)

}
ds (2.3)

in the right-hand side of the second equation. The function T (t) in the differ-
ence under the integral presents the concentration of testosterone which we wish
to hold. It is clear that the integral term increases the concentration of hormone
LH if the concentration x3(t) of Te is less than T (t). The control (2.3) ap-
pears reasonable and could be realized according to opinions of clinical experts.
By substituting this control into the second equation we obtain the system⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

x′
1(t) + b1x1(t) = 0,

x′
2(t) + b2x2(t)− g1x1(t) + c2

t∫
0

e−α2(t−s)x3(s) ds = f(t),

x′
3(t) + b3x3(t)− c1

t∫

0

e−α1(t−s)x2(s) ds = 0, t ≥ 0,

(2.4)

where

f(t) = c2

t∫

0

e−α2(t−s)T (s) ds. (2.5)

3. Main result

������� 3.1� If b2b3α2α1 − c1c2 > 0, then the system (2.4) is exponentially
stable.

P r o o f. Using the idea of the reduction of IDE to the system of ODE proposed
in [7], the system (2.4) can be reduced to the system⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x′
1(t) + b1x1(t) = 0,

x′
2(t) + b2x2(t)− g1x1(t) + c2x4(t) = f(t),

x′
3(t) + b3x3(t)− c1x5(t) = 0,

x′
4(t) + α2x4(t)− x3(t) = 0,

x′
5(t) + α1x5(t)− x2(t) = 0, t ≥ 0,

(3.1)

with the initial conditions

x4(0) = 0, x5(0) = 0. (3.2)
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Three components of solution-vector of the system (2.4) and three first com-
ponents of solution-vector col

(
x1(t), x2(t), x3(t), x4(t), x5(t)

)
of the system (3.1)

coincide. It is clear that x1(t) = e−b1tC → 0 when t → ∞ (C is a constant).
Substituting x1(t) into the second equation of (3.1), we have the system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x′
2(t) + b2x2(t) + c2x4(t) = f(t) + g1e

−b1tC,

x′
3(t) + b3x3(t)− c1x5(t) = 0,

x′
4(t) + α2x4(t)− x3(t) = 0,

x′
5(t) + α1x5(t)− x2(t) = 0, t ≥ 0,

(3.3)

in which the right-hand side of the first equation remains bounded. Thus, we can
conclude that analysis of the exponential stability of the system (3.1) is reduced
to analysis of the exponential stability of the system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x′
2(t) + b2x2(t) + c2x4(t) = 0,

x′
3(t) + b3x3(t)− c1x5(t) = 0,

x′
4(t) + α2x4(t)− x3(t) = 0,

x′
5(t) + α1x5(t)− x2(t) = 0, t ≥ 0.

(3.4)

It is known that the system (3.4) is exponentially stable if the system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x′
2(t) + b2x2(t)− c2x4(t) = 0,

x′
3(t) + b3x3(t)− c1x5(t) = 0,

x′
4(t) + α2x4(t)− x3(t) = 0,

x′
5(t) + α1x5(t)− x2(t) = 0, t ≥ 0,

(3.5)

is exponentially stable. It is necessary and sufficient for the exponential stability
of the system (3.5) that all components z2, z3, z4, z5 of the solution-vector to the
algebraic system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b2z2 − c2z4 = 1,

b3z3 − c1z5 = 1,

α2z4 − z3 = 1,

α1z5 − z2 = 1,

(3.6)

are positive. See, for example, in [14, Theorem 16.5].
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Let us solve the system (3.6):

Δ = det

⎛
⎜⎜⎝

b2 0 −c2 0
0 b3 0 −c1
0 −1 α2 0
−1 0 0 α1

⎞
⎟⎟⎠= b2b3α2α1 − c1c2, (3.7)

Δ1 = det

⎛
⎜⎜⎝

1 0 −c2 0
1 b3 0 −c1
1 −1 α2 0
1 0 0 α1

⎞
⎟⎟⎠= b3α2α1 + c2α1 + c2α1b3 + c1c2, (3.8)

Δ2 = det

⎛
⎜⎜⎝

b2 1 −c2 0
0 1 0 −c1
0 1 α2 0
−1 1 0 α1

⎞
⎟⎟⎠= b2(α1α2 + c1α2) + c1c2 + c1α2, (3.9)

Δ3 = det

⎛
⎜⎜⎝

b2 0 1 0
0 b3 1 −c1
0 −1 1 0
−1 0 1 α1

⎞
⎟⎟⎠= b2(b3α1 + c1 + α1) + c1, (3.10)

Δ4 = det

⎛
⎜⎜⎝

b2 0 −c2 1
0 b3 0 1
0 −1 α2 1
−1 0 0 1

⎞
⎟⎟⎠= b2b3α2 + c2 + b3α2 + b3c2. (3.11)

The conditions of Theorem 3.1 imply that all the components z2, z3, z4, z5
of the solution-vector are positive. According to [14, Theorem 16.5] we obtain
the exponential stability of system (2.4). �
����		
�� 3.1� The system (2.4) can be always stabilized by the control in the
form (2.3).

In order to prove this we choose α2 > c1c2
b2b3α1

. The condition of Theorem 3.1
will be fulfilled.

Example 3.1. If α2α1

c2
> 4

0.01·0.046 , then the system (2.4) is exponentially stable.
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