GENETIC ASPECTS OF PHEOCHROMOCYTOMA

CHRISTIAN A. KOCH, ALEXANDER O. VORMEYER, STEVE C. HUANG, SALVATORE ALESCHI, ZHENGPING ZHUANG, KAREL PACAK

National Institutes of Health, National Institute of Child Health and Human Development, PREB; National Institute of Neurological Disorders and Stroke, SNB, Bethesda, Maryland 20892, U.S.A.
E-mail: Koch@exchange.nih.gov

We here review the literature on genetics related to pheochromocytoma. About 10 percent of these neuroendocrine tumors are hereditary and are most often associated with multiple endocrine neoplasia type 2 (MEN 2), von Hippel-Lindau disease, and neurofibromatosis type 1 (NF 1). Hereditary tumor syndromes such as the aforementioned ones, are ideal to study the molecular pathogenesis of tumorigenesis as opposed to sporadic tumors in which genetic alterations often merely represent epigenetic tumor progression phenomena. Recent advances in molecular genetics, especially of RET, VHL, NF1, and SDHD, helped better understand the pathogenesis of pheochromocytoma. In this paper, we not only summarize key points of genetic discoveries related to pheochromocytoma, but also report in table format all known RET germline mutations related to pheochromocytoma.

Key words: Pheochromocytoma – Genetics – RET – VHL – NF1 – LOH

Pheochromocytoma is a neuroendocrine tumor characterized by chromaffin tissue and composed of catecholamine-containing neurosecretory granules. Pheochromocytomas are mostly located in the adrenal medulla, but also in ganglia of the sympathetic nervous system. Pheochromocytoma can cause endocrine hypertension by oversecretion of catecholamines. Such hypertension can be sustained or paroxysmal and may lead to death from cardiovascular or cerebrovascular disease. Our understanding of the pathogenesis of pheochromocytoma has tremendously grown during the last years along with the increasing advances of molecular genetics. Multiple genetic alterations have been found to be associated with pheochromocytomas and these tumors most often occur in a non-inherited, sporadic form. Some pheochromocytomas, however, are inherited and can be subdivided into a variety of groups: multiple endocrine neoplasia type 2 (MEN 2), von Hippel-Lindau (VHL) disease, neurofibromatosis type 1 (NF 1), hereditary paraganglioma and SDHD gene-related tumors, and hereditary pheochromocytomas of yet unidentified genes (GIMM et al. 2000; BENDER et al. 2000; HANSFORD et al. 2000; JHANG et al. 2000; BAYSAL et al. 2000; NIEHAN et al. 2000; WALTER et al. 1999a, b; KORF et al. 2000; PACAK et al. 2001; ENG et al. 1999; NILSSON et al. 1999).

In general, genetically predisposed patients are younger at diagnosis of pheochromocytoma compared to patients with sporadic pheochromocytomas (KNUDSON et al. 1972).

Genes that have been implicated in initiation and progression of pheochromocytomas include oncogenes, tumor suppressor genes, and a mitochondrial complex II gene, SDHD. Whereas tumor suppressor genes such as VHL, are believed to initiate tumorigenesis according to Knudson’s two-hit model (KNUDSON et al. 1986), oncogenes such as RET may lead to tumor formation by other mechanisms.
Multiple endocrine neoplasia type 2 (MEN 2)

MEN 2 is an autosomal dominant cancer syndrome and divided into three subgroups: 1. MEN 2A, characterized by medullary thyroid carcinoma, pheochromocytoma, and parathyroid hyperplasia/adenoma, 2. MEN 2B, defined by medullary thyroid carcinoma, pheochromocytoma, marfanoid habitus, and multiple mucosal neuromas, and 3. familial medullary thyroid carcinoma. MEN 2 is rare with less than 1000 kindreds worldwide (Eng et al. 1996). Pheochromocytoma in MEN 2 occurs only in MEN 2A and MEN 2B, each with a rate of 50%. The mean age at diagnosis is about 37 years and in most cases, pheochromocytoma occurs bilaterally and multifocally (Howe et al. 1993). These clinical and pathological observations are related to the genetic origin of MEN 2-associated pheochromocytoma. All patients with MEN 2 have germline mutations in the RET proto-oncogene, located on chromosome 10q11.2. This gene comprises 21 exons with 6 so-called “hot spot” exons, i.e., exons that harbor mutations in more than 97% of patients with MEN 2. RET encodes a receptor tyrosine kinase, whose ligands are glial cell line-derived neurotrophic factor (GDNF) and neuropilin (Ponder et al. 1999). GDNF is a member of the transforming growth factor (TGF)-β family. RET activation by GDNF appears to occur via a membrane-bound protein, GFRα, which seems to function as the ligand-binding domain of the ligand-receptor complex (Jiang et al. 2000; Jing et al. 1996; Trupp et al. 1996). The normal function of RET is largely unknown. It is expressed in neural crest-derived tissues such as the chromaffin and parafollicular C-cells, and it may play a role in kidney and gastrointestinal neuronal development (Schuchhardt et al. 1994).

More than 85% of patients with MEN 2A have mutations in codon 634, exon 10 of RET. Analyzing exons 10, 11, and 16 of RET identifies over 95% of known mutations causing MEN 2. Pheochromocytoma in MEN 2 has been reported with certain RET mutations (see Table 1). The result of many of these missense mutations is (constitutive) RET dimerization at steady stage, and hence activation of downstream signal transduction (Santoro et al. 1995; Asai et al. 1995). The risk for development of pheochromocytoma is higher in codon 634 mutations than in other exon 10 and 11 mutations (Mulligan et al. 1994; Schuffenecker et al. 1994). Although patients with RET germline mutations develop hyperplasia of the parafollicular C-cells and adrenal medulla, the exact mechanism(s) of tumor initiation remain unknown. However, we investigated 9 pheochromocytomas from patients with MEN 2A and found that duplication of the mutant RET allele or loss of the wild-type allele can cause tumorigenesis (Huang et al. 2000, Figure 1). Of interest in this context is that recent studies on RET double mutations and sequence alterations in the germline of patients with MEN 2 did not report a more aggressive phenotype. In these reports, however, the RET double mutation or sequence alter-

<table>
<thead>
<tr>
<th>Exon</th>
<th>Codon</th>
<th>Base pair change</th>
<th>Amino acid change</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>609</td>
<td>TGC to TAC</td>
<td>Cys to Tyr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TGC to CGC</td>
<td>Cys to Arg</td>
</tr>
<tr>
<td></td>
<td>611</td>
<td>TGC to TAC</td>
<td>Cys to Tyr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TGC to TGG</td>
<td>Cys to Trp</td>
</tr>
<tr>
<td></td>
<td>618</td>
<td>TGC to GCC</td>
<td>Cys to Gly</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TGC to TGA</td>
<td>Cys to Stop</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TGC to TAC</td>
<td>Cys to Tyr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TGC to TTC</td>
<td>Cys to Phe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TGC to AGC</td>
<td>Cys to Ser</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TGC to TCC</td>
<td>Cys to Ser</td>
</tr>
<tr>
<td></td>
<td>620</td>
<td>TGC to CTC</td>
<td>Cys to Phe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TGC to GCC</td>
<td>Cys to Gly</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TGC to CGC</td>
<td>Cys to Arg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TGC to TCC</td>
<td>Cys to Ser</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TGC to TAC</td>
<td>Cys to Tyr</td>
</tr>
<tr>
<td>11</td>
<td>631</td>
<td>GAC to TAC</td>
<td>Cys to Tyr</td>
</tr>
<tr>
<td></td>
<td>634</td>
<td>TGC to TTC</td>
<td>Cys to Phe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TGC to GCC</td>
<td>Cys to Gly</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TGC to CGC</td>
<td>Cys to Arg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TGC to TCC</td>
<td>Cys to Ser</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TGC to TAC</td>
<td>Cys to Tyr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TGC to AGC</td>
<td>Cys to Ser</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TGC to TGG</td>
<td>Cys to Trp</td>
</tr>
<tr>
<td>13</td>
<td>790</td>
<td>TTG to TTT</td>
<td>Leu to Phe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TTG to TTC</td>
<td>Leu to Phe</td>
</tr>
<tr>
<td></td>
<td>804</td>
<td>GTG to ATG</td>
<td>Val to Met</td>
</tr>
<tr>
<td></td>
<td>804</td>
<td>GTG to GCG</td>
<td>Val to Ala</td>
</tr>
<tr>
<td>15</td>
<td>883</td>
<td>TAC to TGC</td>
<td>Tyr to Cys</td>
</tr>
<tr>
<td>16</td>
<td>918</td>
<td>ATG to ACG</td>
<td>Met to Thr</td>
</tr>
</tbody>
</table>
a. Duplication of mutant RET in trisomy 10 in MEN 2-related pheochromocytoma. On the left side, pheochromocytoma tumor has been analyzed by FISH. Three yellow-green signals in the red tumor cells are shown, indicating trisomy 10. On the right side, linkage analysis shows that allele number 2 is the inherited mutant RET allele. This mutant RET allele number 2 demonstrates strong intensity in lanes 2A and 2B (both pheochromocytoma) compared to lanes N1 (blood DNA from the patient’s cousin “C”) and lane N2 (blood DNA from the patient “Pt2”), indicating allelic imbalance between mutant and wild-type RET which turned out to occur in a ratio of 2:1 by phosphorimage densitometry (modified from Huang/Koch: Cancer Res 2000)

b. Single-strand conformation polymorphism analysis of the same MEN 2-related pheochromocytoma. T, tumor with RET mutation in exon 10; WT, wild-type normal tissue without RET mutation in exon 10. T shows a shift in the gel electrophoresis from the “normal, wild-type germline”, indicating a mutation in this specific exon (10) of RET. Note that only the mutant allele is shown in the bands of T.

c. Loss of heterozygosity (LOH) analysis with polymorphic marker D10S141 and phosphorimage densitometry of the same tumor and genomic blood DNA. In the tumor (T), only one allele is shown, whereas N (genomic blood DNA) shows both alleles. Confirmatory phosphorimage densitometry analysis shows a ratio of the respective alleles, indicating LOH of this pheochromocytoma specimen.

ation occurred on the same allele, thus leaving one intact RET wild-type allele which may exert protective neutralizing effects (Koch et al. 2000; Bartesch et al. 2000; Tessitore et al. 1999). This supports our recent findings of pheochromocytoma tumorigenesis by a dominant effect of mutant RET.

Patients with MEN 2B usually have a more aggressive phenotype and more than 95% of these patients have a single methionine to threonine substitution at codon 918 in exon 16 of RET, the tyrosine kinase domain (Mulligan et al. 1995; Eng et al. 1994; Carlson et al. 1994; Gordon et al. 1998). This may be related to the fact that mutations in exon 16 affect the tyrosine kinase catalytic site in the intracellular domain of the protein (Eng et al. 1994; Carlson et al. 1994; Hofstra et al. 1996). Authorities recommend screening for pheochromocytoma to begin at age 6, since pheochromocytoma has been described in 10- to 12-year old children (Gagel et al. 1988; Jadoul et al. 1989). Genetic testing for RET mutations is readily available (see HTTP://ENDOCRINE.MDACC.TMC.EDU; Hoppner W, Institute of Hormone and Fertility Research, Hamburg, Germany; Mayo Clinic, Rochester, MN).

Malignant pheochromocytoma is characterized by metastatic deposits of primary tumor tissue outside the site of origin. The prevalence of malignant pheochromocytoma in familial syndromes varies depending on the familial syndrome and the follow-up period. In MEN 2- and VHL-related pheochromocytomas, about 25% of tumors are reported as malignant on up to 25 year follow-up (Walther et al. 1999a; Carney et al. 1976; Neumann et al. 1993; Wilson et al. 1978; Padberg et al. 1992; Koch et al., unpublished data).
Pheochromocytoma in von Hippel Lindau disease type 2

VHL disease is an autosomal dominant inherited tumor syndrome with pheochromocytoma (VHL type 2) or without pheochromocytoma (VHL type 1). Based on the VHL classification system, the most common form of VHL disease, VHL type 1, is characterized by a predisposition to develop retinal angiomas, central nervous system hemangioblastomas and clear cell renal cell carcinomas. VHL type 2B is the second most common form of VHL disease and is characterized by development of VHL type 1 tumors and pheochromocytomas. VHL type 2A is a form of VHL disease characterized by a predisposition to develop pheochromocytomas without renal cell carcinoma, and infrequent hemangioblastomas and retinal angiomas. Germline mutations in the VHL gene responsible for each of these three VHL phenotypes have been identified and catalogued (see http://www.ncifcrf.gov/research/kidney; Zbar et al. 1996). Pheochromocytoma occurs in 10 to 34% of VHL patients (Walthier et al. 1999a; Maher et al. 1990; Richard et al. 1994) and is the presenting manifestation in about 5% of cases. The mean age at diagnosis is 28 years and in about 50% of cases tumors are bilateral (Richard et al. 1994; Koch et al., unpublished).

In contrast to the RET proto-oncogene, the VHL gene is a tumor suppressor gene. Tumor formation in tumor suppressor gene-related neoplasms usually occurs by the “two-hit” model, that is inactivation of the second, wild-type allele by various mechanisms (Knudson et al. 1986). More than 300 VHL germline mutations have been identified and 36 of them are associated with pheochromocytoma (Neumann et al. 2001). The VHL tumor suppressor gene is located on chromosome 3p25-26. Its cloned coding sequence is represented in three exons (Figure 2). About 15% of patients with VHL-associated pheochromocytoma have large germline deletions detected by Southern blot analysis. Another 2% of patients have larger deletions detected by Southern pulsed field gel electrophoresis (Latif et al. 1993; Richards et al. 1993; Yao et al. 1993). Most patients with VHL-associated pheochromocytoma have missense mutations (Crossey et al. 1994; Van Der Harst et al. 1998; Ritter et al. 1996). A mutation hotspot has been described at codon 167 in exon 3 (equivalent to nt 712/713) which accounts for about 9% of patients (Walthier et al. 1999a; Crossey et al. 1994; Chen et al. 1995). Genotype-
specific VHL phenotypes have been reported (Walther et al. 1999a; Atuk et al. 1998). "Founder effects" may explain regional prevalence rates, e.g. the Black Forest area in Southern Germany with the missense mutation tyrosine to histidine at codon 98 (Tyr98His) and subsequent high risk of pheochromocytoama (Neumann et al. 1993; Brauch et al. 1995; Gross et al. 1996). The VHL gene product forms a stable complex with the highly conserved transcription elongation factors elongin B and elon- gin C, factors that regulate RNA polymerase II elongation. Formation of this heterotrimeric complex with elongin B and C appears to be the tumor sup- pressor function of the VHL gene, since the majority of tumor-predisposing mutations of VHL disrupt the formation of this complex (Duan et al. 1995; Neumann et al. 1995; AsO et al. 1995). Elongin A is required to inhibit the processing of RNA poly- merase II, allowing cell processivity of transcription. The VHL gene product and elongin A compete for binding to elongin B and C via a short shared sequence motif. This sequence which is found in the third exon of VHL is highly mutated in VHL disease.

Pheochromocyoma in neurofibromatosis type 1

NF1 is the most common familial cancer syn- drome predisposing to pheochromocyoma. It affects about one in 4000 individuals. The risk of pheochromocyoma in NF1, however, is small, about 2% (Riccardi et al. 1991; Huson et al. 1998). NF1 is inherited as an autosomal dominant trait with variable expression. 50% of patients have new muta- tions. Pheochromocyoma in patients with NF1 occurs at a later age than in MEN 2 and VHL dis- ease. The mean age at diagnosis is in the fifth decade. Onset before age 20 years is uncommon (Knudson et al. 1972). About 22% of NF1 patients with pheochromocyoma have multiple and/or bilat- eral tumors. Pheochromocyoma in patients with NF1 are rare (about 6%) in contrast to patients with VHL disease (about 30%) and with MEN 2 (about 13%) (Walther et al. 1999b; Howe 1993; Carney et al. 1976; Neumann et al. 1993; Kalf et al. 1982; Richards et al. 1994; Sato et al. 1988; Atuk et al. 1979; Dellelisi et al. 1976; Webb et al. 1980; Carney et al. 1978; Rosenthal et al. 1986; Lichtenstein et al. 1949; Visser et al. 1975; Samaan et al. 1988; Fisher et al. 1993; Cancé et al. 1985; Gosset et al. 1999; Lips et al. 1981).

The NF1 gene is a tumor suppressor gene gene- ming to chromosome 17q11.2. It was isolated in 1990 (Viskochil et al. 1990; Wallace et al. 1990; Ca- thon et al. 1990). Because of the large gene size (11 kb of coding sequence extending over 300 kb of ge- nomic DNA), mutation analysis has been difficult (in only about 15% of patients mutations are identified). Patients with NF1 associated pheochromocy- toma show loss of the wild type allele (Xu et al. 1992; Gutmann et al. 1994). Neurofibromin, the NF1 gene product, bears homology to the RAS/GTPase activ- ating protein (GAP) (Ballester et al. 1990). P21- RAS/GAP increases the rate of intrinsic GTP hydrol- ysis in the small G proteins, the RAS genes, thereby mediating the return of the G protein switch to the "off" GDP-bound form. It can therefore decrease (or control) signal transduction via the RAS pathways, thereby perhaps acting as a tumor suppressor. This notion is supported by the fact that inactivating mu- tations in the NF1 gene are mainly found in the RAS/ GAP homology region.

Malignant pheochromocyomas in patients with NF1 are rarely reported (Kalff et al. 1982; Okada et al. 1984).

Hereditary paragangliomas

Paragangliomas are tumors arising in extra-adre- nal chromaffin tissue such as the organ of Zuckerkandl. The most common tumor site is the carotid body, a chemoreceptive organ that senses oxygen levels in the blood. The genetic basis of this disorder remains largely unknown, although recent analyses of fami- lies with paraganglioma revealed two possible chro- mosomal loci for this tumor, one on chromosome 11q13 and the other on chromosome 11q23. In some of these tumors, germline mutations in SDHD, a mitochondrial complex II gene, have been identi- fied (Bayak et al. 2000). SDHD is located on chromo- some 11q23 and encodes the small subunit of cytochrome b in the succinate-ubiquinone oxidoreduc- tase complex (mitochondrial complex II). This enzyme complex is important for the aerobic respiratory chain of eukaryotic cell mitochondria. The SDHD gene com- prises three introns and four exons.
Non-familial, sporadic pheochromocytoma

The underlying genetic basis for tumorigenesis of sporadic pheochromocytomas remains to be elucidated as does the search for molecular markers that can distinguish between benign and malignant pheochromocytomas.

Oftentimes, investigators search apparently sporadic tumors for somatic mutations of genes that have been identified as causes for familial cancer syndromes such as RET, VHL, and NF1. This approach led to a new defined non-familial pheochromocytoma type related to germline mutations of SDHD (Gimm et al. 2000). However, the percentage of somatic mutations of genes that are known to be responsible for familial cancer syndromes, is low in non-familial forms of the relevant tumor. In sporadic pheochromocytomas, somatic mutations of the VHL gene are uncommon with a prevalence of about 8% (Bender et al. 2000; Hofstra et al. 1996; Bar et al. 1997; Eng et al. 1995; Brauch et al. 1997; Crossley et al. 1995). Somatic mutations of RET in sporadic pheochromocytomas are also uncommon with about 10 to 20% (Eng et al. 1995; Lindor et al. 1995; Beldjord et al. 1995; Bender et al. 2000; Januszewicz et al. 2000; Komminoth et al. 1996; Chew et al. 1995; Quadro et al. 1994), with the codon 918 somatic RET mutation (MEN 2B mutation) as the one most commonly found, i.e. in up to 10% of cases (Eng et al. 1995; Lindor et al. 1995; Chew et al. 1995; Quadro et al. 1994; Thibodeau et al. 1994). Somatic mutations in NF1 have also been described in sporadic pheochromocytomas including a finding of reduced or absent NF1 gene expression in seven of 20 non-NF1 pheochromocytomas (Gutmann et al. 1994) suggesting that NF1 inactivation can be involved in the pathogenesis of non-familial pheochromocytomas.

Somatic and occult germline mutations in SDHD have been detected in 4 of 18 apparently sporadic pheochromocytoma and paraganglioma tumors (Gimm et al. 2000).

Allele losses on chromosome 1p, 3p and 17p are common findings in familial and non-familial pheochromocytomas (Bender et al. 2000; Khosla et al. 1991; Vargas et al. 1997; Tsutsumi et al. 1989; Moley et al. 1992; Benn et al. 2000; Dannenberg et al. 2000; Mathew et al. 1987; Mulligan et al. 1993). However, most of these allele losses are not clearly involved in tumorigenesis of pheochromocytomas but rather in tumor progression, therefore representing more likely “epigenetic” phenomena. One can implicate an accumulation of mutations in several genes in both familial and sporadic pheochromocytoma. However, the specific role/function of some of these genes remains to be elucidated i.e. details of how mutations in different biochemical pathways might interact with each other to produce tumorigenesis. Future analyses of pheochromocytomas with microarray techniques and proteomics may help answer these questions.

References

Benn DE, Dwight T, Richardson AL, et al. Sporadic and familial pheochromocytomas are associated with loss of at least two discrete intervals on chromosome 1p. Cancer Res 60, 7048-7051, 2000

Gutmann DH, Cole JL, Ston J, Ponder BA, Collins FS: Loss of neurofibromin in adrenal gland tu-
mors from patients with neurofibromatosis type 1. Genes Chromosomes Cancer 10, 55-58, 1994

HANSFORD JR, MULLIGAN LM. Multiple endocrine neoplasia type 2 (MEN 2) and RET: from neoplasia to neurogenesis. J Med Genet 37, 817-827, 2000

HOFSTRA RMW, STELWAGEN T, STULT RP, et al. Extensive mutation scanning of RET in sporadic medullary thyroid carcinoma and of RET and VHL in sporadic pheochromocytoma reveals involvement of these genes in only a minority of cases. J Clin Endocrinol Metab 81, 2881-2884, 1996

HUANG SC, KOCH CA, VORTEMEYER AO, PAACK SD, LICHTENAUER UC, MANNAN P, LIUBENSKY IA, CHIYUOS GP, GAGEL RF, PACAK K, ZHANG Z. Duplication of the mutant RET allele in trisomy 10 or loss of the wild-type allele in multiple endocrine neoplasia type 2-associated pheochromocytoma. Cancer Res 60, 6223-6226, 2000a

JHANG SM. The RET protooncogene in human cancers. Oncogene: 19, 5590-5597, 2000

JING S, WEN D, YU Y, et al. GDNF-induced activation of the RET protein tyrosine kinase is mediated by GDNFR-a, a novel receptor for GDNF. Cell 85, 1113-1124, 1996

KORF BR. Malignancy in neurofibromatosis type 1. The Oncologist:477-485, 2000

LICHTEIENSTEN B: Neurofibromatosis of the nervous system. Analysis of the total pathologic picture. Arch Neurol Psychiat 62, 822-839, 1949

LINDOR NM, HENCHER R, KHOSLA S, THIBODEAU SN. Mutations in the RET protooncogene in sporadic pheochromocytomas. J Clin Endocrinol Metab 80, 627-629, 1995

Mulligan LM, Gardner E, Smith BA, Mathew CG, Ponder PA. Genetic events in tumour initiation and progression in multiple endocrine neoplasia type 2. Genes Chromosomes Cancer 6, 166-177, 1993

Ponder BAJ. The phenotypes associated with ret mutations in the multiple endocrine neoplasia type 2 syndrome. Cancer Res 59, 1736-1742, 1999

somes 1 and 3 in sporadic pheochromocytoma and extraadrenal paraganglioma. Hum Pathol 28, 411-415, 1997

Corresponding author: Dr. med. Christian A. Koch
NIH, NICHD, PREB
Building 10, Rm 9D42
Bethesda, MD 20892
Kochc@exchange.nih.gov
Fax: 001 301 402 0180
Phone: 001 301 402 4620