Facebook Instagram Twitter RSS Feed PodBean Back to top on side

Convergence rates of the LIL for random fields in Hilbert spaces

In: Mathematica Slovaca, vol. 61, no. 2
Ke-Ang Fu - Xiao-Rong Yang
Detaily:
Rok, strany: 2011, 275 - 288
Kľúčové slová:
the law of the iterated logarithm, random fields, Hilbert space, strong approximation
O článku:
Considering the positive d$-dimensional lattice point $Z+d$ ($d≥2$) with partial ordering $≤$, let $\{X_{\mathbf{k}}: {\mathbf{k}}\in Z+d\}$ be i.i.d. random variables taking values in a real separable Hilbert space $({\mathbf{H}},|·|)$ with mean zero and covariance operator $Σ$, and set $S_{\mathbf{n}}=∑_{{\mathbf{k}} ≤{\mathbf{n}}}X_{\mathbf{k}}$, ${\mathbf{n}}\in Z+d$. Let $σi2$, $i≥1$, be the eigenvalues of $Σ$ arranged in the non-increasing order and taking into account the multiplicities. Let $l$ be the dimension of the corresponding eigenspace, and denote the largest eigenvalue of $Σ$ by $σ2$. Let $ log x=\ln(x\vee e)$, $x≥0$. This paper studies the convergence rates for $∑_{\mathbf{n}} \frac{( log log|\mathbf{n}|)b}{|\mathbf{n}| log|\mathbf{n}|} \mathsf{P}\b(|S\mathbf{n}|≥σε \sqrt{2|\mathbf{n}| log log|\mathbf{n}|} \bb)$. We show that when $l≥2$ and $b>-l/2$, $\mathsf{E}[|X|2( log|X|)d-2 ( log log|X|)b+4]<∞$ implies \begin{align*} &\lim_{ε\searrow\sqrt{d-1}}(ε2-d+1)b+l/2 ∑_{\mathbf{n}} \frac{( log log|\mathbf{n}|)b}{|\mathbf{n}| log|\mathbf{n}|} \mathsf{P}\b(|S\mathbf{n}|≥σε \sqrt{2|\mathbf{n}| log log|\mathbf{n}|} \bb) {}={}&\frac{K(Σ) (d-1)((l-2) / (2))Γ(b+l/2)} {Γ(l/2)(d-1)!}, \end{align*} where $Γ(·)$ is the Gamma function and $K(Σ)=\prodi=l+1((σ2i2)/σ2)-1/2$.
Ako citovať:
ISO 690:
Fu, K., Yang, X. 2011. Convergence rates of the LIL for random fields in Hilbert spaces. In Mathematica Slovaca, vol. 61, no.2, pp. 275-288. 0139-9918. DOI: https://doi.org/10.2478/s12175-011-0011-8

APA:
Fu, K., Yang, X. (2011). Convergence rates of the LIL for random fields in Hilbert spaces. Mathematica Slovaca, 61(2), 275-288. 0139-9918. DOI: https://doi.org/10.2478/s12175-011-0011-8
O vydaní: