Facebook Instagram Twitter RSS Feed Back to top

Zoznam medzinárodných projektov SAV

Lock Databáza medzinárodných projektov
Fyzikálny ústav SAV
Cieľový projekt — Research on Relativistic Heavy and Light Ion Physics
Research on Relativistic Heavy and Light Ion Physics
Program: Medzivládna dohoda
Zodpovedný riešiteľ: Ing. Kliman Ján DrSc.
Doba trvania: 1.1.2009 - 31.12.2021
Cieľový projekt — Theoretical study of heavy and exotic hadrons properties in the framework of a relativistic quark model
Theoretical study of heavy and exotic hadrons properties in the framework of a relativistic quark model
Program: Medzivládna dohoda
Zodpovedný riešiteľ: RNDr. Dubnička Stanislav DrSc.
Doba trvania: 1.7.2017 - 31.12.2023
Grant vládneho splnomocnenca — SÚJV
JINR
Program: Medzivládna dohoda
Zodpovedný riešiteľ: Doc. RNDr. Běták Emil DrSc.
Doba trvania: 1.1.2019 - 31.12.2023
Grant vládneho splnomocnenca — Synthesis and Properties of Superheavy Elements, Structure of Nuclei and Limits of Nuclear Stability
Synthesis and Properties of Superheavy Elements, Structure of Nuclei and Limits of Nuclear Stability
Program: Medzivládna dohoda
Zodpovedný riešiteľ: Ing. Kliman Ján DrSc.
Doba trvania: 1.1.2017 - 31.12.2021
Lapené ióny: Rozvoj klasických a kvantových aplikácií
Trapped ions: Progress in classical and quantum applications
Program: COST
Zodpovedný riešiteľ: Prof. RNDr. Bužek Vladimír DrSc.
Anotácia:Trapped ions are currently the most promising implementation of a quantum computer, where many essential building blocks have been developed in recent years. Moreover, magnetic field sensing with high sensitivity has been demonstrated and some of today’s best atomic clocks are based on atomic ions. These applications have the potential to revolutionise many aspects of our daily life. The aim of this COST Action “Trapped Ions: Progress in classical and quantum applications” (CA17113) is to enhance the current classical and quantum applications of trapped ions by supporting Europe-wide collaborations and knowledge exchange, and to allow these technologies to be taken a step further towards their commercialisation.
Doba trvania: 19.12.2019 - 17.9.2022
Nové magneticky mäkké jadrá pre satelitné zariadenia a magnetometre pracujúce v kozmických podmienkach
Novel soft magnetic cores tailored for use in space qualified magnetometers and satellite devices
Program: JRP
Zodpovedný riešiteľ: Ing. Švec Peter DrSc.
Anotácia:Cieľom projektu je návrh a vývoj magnetometra typu flux-gate a magnetického rotátora zabezpečujúceho určenie polohy a orientácie a polohovanie satelitov na nízkych a stredných orbitoch a satelity GPS. V rámci aktivít sa vyvinú vhodné magnetické obvody pre uvedené účely a s ich využitím sa skonštruujú štruktúrne, technické a letové modely pre oba typy prvkov. Letové modely sa otestujú podľa požiadaviek na využitie v reálnych podmienkach (EMC, radiačná a vibračná odolnosť, tepelná odolnosť vo vákuu).
Doba trvania: 1.9.2018 - 31.8.2021
Quantum Information Structure of Spacetime
Quantum Information Structure of Spacetime
Program: Multilaterálne - iné
Zodpovedný riešiteľ: Doc. Mgr. Ziman Mário PhD.
Anotácia:Recent advances in Quantum Gravity -the effort to understand the quantum properties of space and time- point to a central role played by the notion of Information: quantum theory gives the observer a role, replacing the objective spacetime substratum with an observer–dependent informational structure. Recent advances in Quantum Information have shown that information theoretical tools naturally describe evolution of quantum geometry, have explored non-trivial causal structures, and the role these can play in Quantum Computing. The convergence between these two vibrant research domains raises foundational issues that question the hearth of our understanding of the world: Is there a deep connection between Information and the nature of Space and Time? Are space and time losing their role as grounds for an objective physical reality?
Doba trvania: 1.12.2019 - 31.8.2022
Rozvoj učenia založeného na bádaní pomocou IYPT
Development of Inquiry Based Learning via IYPT
Program: Multilaterálne - iné
Zodpovedný riešiteľ: Doc. RNDr. Plesch Martin PhD.
Doba trvania: 1.11.2019 - 30.6.2022
Stavy tenzorových sietí Algoritmy a aplikácie
Tensor-Network States Algorithms and Applications
Program: JRP
Zodpovedný riešiteľ: Mgr. Gendiar Andrej PhD.
Doba trvania: 1.1.2021 - 31.12.2022
Superinductor-based Quantum Technologies with Ultrastrong Couplings
Superinductor-based Quantum Technologies with Ultrastrong Couplings
Program: ERANET
Zodpovedný riešiteľ: Prof.RNDr. Grajcar Miroslav DrSc.
Anotácia:Superconducting quantum circuits form one of the most promising solid state platforms for quantum computing. This success builds on the naturally large interaction between light, represented by microwave signals, and matter, embodied by superconducting qubits. Microwave photons are used at every stage of quantum information protocols: qubit manipulation, qubit readout and qubit-qubit coupling. To describe this rich and ubiquitous light-matter interaction, the community has relied so far on the conceptual tools inherited from quantum optics. However, atoms and photons interact weakly, perfectly justifying the use of the rotating wave approximation (RWA), which states that non-resonant processes can be safely neglected. The situation with superconducting circuits is quite different since qubits can literally be wired to transmission lines carrying microwave photons. And limitations of the RWA have already been pointed out for qubit readout or driven-dissipative protocols. SiUCs will follow a radically new approach: we will harness the potentiality of very large light-matter coupling -often referred to as ultra-strong coupling- instead of fighting it. In order to address this challenging approach in a controlled way, we will develop an architecture based on superinductors. Resonators and transmission lines built from such components display impedances close to the quantum of resistance (RQ~6.5 kOhms) at gigahertz frequencies, with very low losses, allowing a boost in light-matter interaction. SiUCS will more specifically focus on improving the efficiency of qubit operations involving light-matter interactions. In addition, superinductors will be used to engineer a missing device of the superconducting quantum circuit toolbox: the microwave single photon detector. Finally, unique many-body physics associated to ultrastrong couplings will be investigated thanks to purposely designed quantum simulators.
Doba trvania: 1.4.2020 - 31.12.2022
Vysokorozmerná kvantová fotonická platforma
High dimensional quantum Photonic Platform
Program: ERANET
Zodpovedný riešiteľ: Doc. Mgr. Ziman Mário PhD.
Anotácia:Develop near-optimal single-photon sources based on semiconductor quantum dots, and couple them to highly reconfigurable 3D photonic glass chips to implement multi-photon multi-mode quantum walks. As a first benchmark, we will demonstrate quantum advantage (or supremacy) through high photon-number Boson sampling measurements. The platform will then be used to demonstrate secure quantum computation (homomorphic encryption) and quantum communication (quantum enigma machine) tasks on chip. A new advanced metrology task will be proposed and demonstrated, with simultaneous multi-parameter estimation.
Doba trvania: 1.4.2018 - 30.3.2021
Z vesmíru do laboratória: vývoj nového typu permanentných magnetov na báze fázy L10-FeNi
From the Cosmos to the Lab: Development of the L10-FeNi Phase as a Disruptive Permanent Magnet Alternative
Program: ERANET
Zodpovedný riešiteľ: Ing. Švec Peter DrSc.
Anotácia:Cieľom projektu COSMAG je vývoj umelého permanentného magnetu novej generácie bez kritických prvkov, ktorý sa prirodzene vyskytujú iba v niektorých meteoritoch v štruktúrach FeNi s usporiadaním L10. Konzorcium projektu tvoria tri akademické pracoviská a priemyselný partner financovaný z vlastných zdrojov. Fáza L10-FeNi vzniká prirodzeným spôsobom v meteoritoch milióny rokov. Merania na vzorkách meteoritov a teoretické predpovede však ukázali, že tento materiál môže vlastnosťami konkurovať permanentným magnetom najvyššej kvality (NdDyFeB) a nie je známa iná alternatíva, ktorá neobsahuje prvky vzácnych zemín. Vedecký a technologický význam projektu spočíva v príprave usporiadanej fázy L10-FeNi s magnetickými vlastnosťami prírodného (meteorického) FeNi avšak za dobu mnoho rádov kratšiu, ako vo vesmíre.
Doba trvania: 1.10.2020 - 30.9.2023

Celkový počet projektov: 12