Facebook Instagram Twitter RSS Feed PodBean Back to top on side

The Algorithms for FPGA Implementation of Sparse Matrices Multiplication

In: Computing and Informatics, vol. 33, no. 3
E. Jamro - T. Pabiś - P. Russek - K. Wiatr

Details:

Year, pages: 2014, 667 - 684
Keywords:
FPGA, sparse matrices, sparse BLAS, matrices multiplication
About article:
In comparison to dense matrices multiplication, sparse matrices multiplication real performance for CPU is roughly 5--100 times lower when expressed in GFLOPs. For sparse matrices, microprocessors spend most of the time on comparing matrices indices rather than performing floating-point multiply and add operations. For 16-bit integer operations, like indices comparisons, computational power of the FPGA significantly surpasses that of CPU. Consequently, this paper presents a novel theoretical study how matrices sparsity factor influences the indices comparison to floating-point operation workload ratio. As a result, a novel FPGAs architecture for sparse matrix-matrix multiplication is presented for which indices comparison and floating-point operations are separated. We also verified our idea in practice, and the initial implementations results are very promising. To further decrease hardware resources required by the floating-point multiplier, a reduced width multiplication is proposed in the case when IEEE-754 standard compliance is not required.
How to cite:
ISO 690:
Jamro, E., Pabiś, T., Russek, P., Wiatr, K. 2014. The Algorithms for FPGA Implementation of Sparse Matrices Multiplication. In Computing and Informatics, vol. 33, no.3, pp. 667-684. 1335-9150.

APA:
Jamro, E., Pabiś, T., Russek, P., Wiatr, K. (2014). The Algorithms for FPGA Implementation of Sparse Matrices Multiplication. Computing and Informatics, 33(3), 667-684. 1335-9150.