Facebook Instagram Twitter RSS Feed Back to top

The list of national projects SAS

Institute of Inorganic Chemistry
Carbon-silicon based composite anodes for Li-ion batteries
Anódy pre Li-iónové batérie na báze uhlík-kremíkových kompozitov
Program: SRDA
Project leader: doc. Ing. Lenčéš Zoltán PhD.
Duration: 1.7.2020 - 30.6.2024
Bionanocomposites based on organic polycations and layered silicates
Bionanokompozitné materiály na báze vrstevnatých silikátov
Program: SRDA
Project leader: RNDr. Madejová Jana DrSc.
Annotation:The basic research project deals with the preparation and complex characterisation of the structurally unique types of hybrid materials consisting of clay minerals from smectite group and new synthesized poly(ethylene imine) based polycations. Polymerization of oxazolines opens a wide range of possibilities for the preparation of welldefined polycations with precisely designed molecular architectures and properties in order to prepare suitable intercalating agents for clay minerals modifications. The aim is to provide nanocomposites with interesting biocompatible or biodegradable properties. To achieve this aim a detailed investigation of the effect of various factors on the molecular characteristics of poly(ethylene imine) based polycations and consequently on their behavior upon smectites interlayers intercalation has to be performed using wide range of different experimental technique (e.g., XRD, XPS, MAS NMR, and IR spectroscopies) but also by means of DFT method in the solid state. Biocompatibility of prepared polycations and their smectite intercalates will be assed based on cell viability assay and cell morphology after direct contact with selected substances. Prepared polycationic-smectites will be further studied due to their possible applications as new types of fillers for selected biodegradable polymers, drug-delivery systems and as new composite materials with optical properties. Interdisciplinary project, as designed, provides unique platform for understanding the properties of the newly synthesized polycation-smectite composites. This approach can significantly contribute to the current level of knowledge in the fields of nanomaterials and has the potential for acquiring fundamentally new results.
Duration: 1.7.2020 - 30.6.2024
Electromagnetic shielding properties of functionally graded layered SiC-graphene and SiC-carbon nanotubes composites
Elektromagnetické tienenie funkčne gradientných vrstevnatých kompozitov na báze SiC s prídavkom grafénu a uhlíkových nanorúrok
Program: VEGA
Project leader: Ing. Hanzel Ondrej PhD.
Annotation:The main goal of this project is preparation of layered SiC-carbon nanostructure composites with highelectromagnetic shielding effectiveness. The research will be focus on study of effect of carbon nanostructures (graphene nanoplatelets and carbon nanotubes) addition into the silicon carbide matrix and arrangement of functional layers on electromagnetic shielding effectiveness and functional properties of layered composites. In order to achieve project objectives, research focused on preparation of composite granulated powders with homogeneous distribution of graphene nanoplatelets (GNPs) and carbon nanotubes (CNTs) and their subsequent effective sintering will be necessary. Composition and arrangement of functional layers of composite layered materials with gradient content of carbon nanostructures will be optimized in order to achieve high electromagnetic shielding effectiveness. Functional and mechanical properties of such prepared layered composites will be studied as well.
Duration: 1.1.2021 - 31.12.2024
Phase changes of metal oxides in fluoride melts
Fázové premeny oxidov kovov v roztavených fluoridových systémoch
Program: VEGA
Project leader: doc. Ing. Boča Miroslav DrSc.
Annotation:The project is oriented to the study of dissolution of rare earth metal oxides and metal oxides of elements used in superalloys used in molten fluorides application of the type MF or NF2 (M=Li, Na and K; N=Mg and Ca). The aim is to find an appropriate electrolyte with the maximal metal oxide solubility for electrolytic metal production as well as to find the system with the minimal metal oxide solubility due to the corrosion protection of alloys used as construction materials. Integral part of this research is the formulation of a model for metal oxide dissolution in fluoride melts as well as the analysis of physico-chemical properties (density, viscosity, surface tension, electrical conductivity) and thermochemical properties (phase diagrams, and thermochemical characteristics) of the melts. Analysis of the solidified melts will be done based on spectral and diffraction methods. The selection of studied systems is done based on the context of e.g. transparent ceramic or phase change materials applications.
Duration: 1.1.2020 - 31.12.2023
Fluoride melts with potential applications in electrochemical aluminum production
Fluoridové taveninové systémy s potenciálom využitia v elektrochemickej výrobe hliníka
Program: VEGA
Project leader: Ing. Šimko František PhD.
Annotation:Predkladaný projekt je zameraný na fázovú a štruktúrnu analýzu systémov MF-AlF3 (M = Na, K a Rb) s prídavkom Al2O3, s potenciálom využitia pri elektrochemickej výrobe hliníka. Ide o tzv. nízko teplotné elektrolyty, ktorých výskum v poslednej dobe vzrástol s vývojom tzv. „inertných“ elektród, aplikovateľných do procesu výroby. Cieľom projektu bude definovať fázové zloženie systémov a identifikovať jednotlivé zložky. Tie budú podrobené štúdiu tepelnej stability, spektrálnej a difrakčnej charakterizácii s cieľom zistiť závislosť medzi štruktúrnymi parametrami (ako napr. polomerov M+ alebo spôsobu usporiadania polyédrov v štruktúre) a vlastnosťami študovaných zložiek (napr. počtom a charakterom fázových prechodov). Využije sa multidisciplinárny prístup, ktorý bude zahrňovať použitie difrakčných a spektrálnych metód priamo in-situ v roztavenom stave, v spojení s ex-post analýzou zatuhnutých vzoriek.
Duration: 1.1.2018 - 31.12.2021
Photoluminescent transparent oxynitride-based ceramics
Fotoluminiscenčné transparentné keramické materiály na báze oxinitridov
Program: VEGA
Project leader: doc. Ing. Lenčéš Zoltán PhD.
Annotation:The aim of the project is to develop effective processing of optically transparent polycrystalline ceramics in the Mg-Si-Al-O-N, namely based on MgAlON spinel and silicon oxynitride (o’-sialon) ceramics from crystalline powders and metal-organic polymer precursors. A defects-free processing methodology from starting powders to final materials will be investigated. The project is targeting on evaluation and elimination of material flaws during the processing of transparent materials throughout: (1) selection of starting powders with appropriate particle sizes, (2) preparation of stable dispersed ceramic suspensions, (3) using efficient wet powder compaction methods, (4) improving the homogeneity of green samples, (5) optimization of sintering conditions and (6) quality of surface finishing in sintered materials. The effect of rare-earth and/or transition metal oxides and fluorides doping on both sintering and optical properties (transparency, photoluminescence) of ceramic materials will be studied.
Duration: 1.1.2018 - 31.12.2021
Interaction of fluoride melts of rare earth elements with oxides of critical elements in the context of special applications
Interakcia fluoridových taveninových systémov prvkov vzácnych zemín s oxidmi kritických prvkov v kontexte špeciálnych aplikácií
Program: SRDA
Project leader: doc. Ing. Boča Miroslav DrSc.
Annotation:The aim of the research activities of this project is to study the interaction of molten fluorides of selected elements from the group of critical raw materials (defined by the European Raw Materials Initiative) with their oxides, while the systems are consisting of: . "solvents" which may be considered to be some binary fluoride MF or NF2 (M = Li, Na or K; N = Mg or Ca) or selected eutectic mixtures thereof (e.g. (LiF-NaF-KF)eut = FLiNaK, (LiF-CaF2)eut or (NaF-MgF2)eut), . Ln2O3 metal oxides (Ln = La, Ce, Sm, Eu, Nd, Gd), or transition metal oxides used in superalloys (e.g. Cr2O3, Fe2O3, NiO, ZrO2, Nb2O5, Ta2O5), . and the corresponding metal fluorides of the point above (LnF3, MetFx; x = 2-5). Such systems are currently in use or are being developed for their use in key industries such as metal production, energy applications or corrosion protection. The scientific activities of these systems deals with physico-chemical and thermo-chemical analysis of the systems in molten state (in situ), spectral and diffraction analysis of formed phases. The selection of used methods follows the above aims: thermal analysis, density, viscosity, surface tension, wetting and electrical conductivity measurements for the description of physico-chemical properties; simultaneous thermal analysis (TA/DTA/DSC) for the description of thermo-chemical properties and for the description of spectral and diffraction properties the following methods will be used: XRD, XSC, XRF, XPS, IR, NMR. The integral part of the project is the study of corrosion resistance of different construction under interaction with studied melts.
Duration: 1.7.2020 - 30.6.2024
Corrosion and weathering of tablewareglass
Korózia a zvetrávanie úžitkových skiel
Program: VEGA
Project leader: doc. Ing. Chromčíková Mária PhD.
Duration: 1.1.2018 - 31.12.2021
Long persistent phosphors on the base of stoichiometric aluminates and silicates for optical and biomedical applications
Nové anorganické fosfory na báze stechiometrických hlinitanov a kremičitanov s dlhodobou svetelnou emisiou pre optické a biomedicínske aplikácie
Program: VEGA
Project leader: prof. Ing. Galusek Dušan DrSc.
Duration: 1.1.2018 - 31.12.2021
Novel glass and glass-ceramic rare-earth aluminates-based phosphors for energy-savin solid state lighting sources emitting while light (pc-WLEDs)
Nové sklenené a sklokeramické fosfory na báze hlinitanov vzácnych zemín pre aplikácie v pevnolátkových energiu šetriacich svetelných zdrojoch vyžarujúcich biele svetlo (pc-ELED diódy)
Program: SRDA
Project leader: prof. Ing. Galusek Dušan DrSc.
Annotation:The project is focused on research and development of novel glass and glass-ceramic rare-earth aluminates-based luminescent materials for white light-emitting diodes (pc-WLED), especially materials with efficient red emission, which could improve CRI index compared to the known commercially produced phosphors. Phosphors will be prepared in the form of glass microbeads. The structure of un-doped alumninate glasses in the system Al2O3-RE2O3 will be studied by spectroscopic methods. Thermal properties and kinetics of crystallization will be also studied. In order to preparer glass-ceramics materials with required properties, the conditions of crystallization process will be investigated and optimized. Photoluminescence properties of glass and glass-ceramic rare-earth and transition metal ions doped materials will be studied in detail. Special attention will be paid to study of relations between luminescent properties of materials and their structure and morphology. In final stage of the project, the composite PiG materials (Phosphor in Glass) will be prepared and characterized as thin plates suitable for direct application onto excitation LED chip. A LED diode emitting white light/warm white light will be contracted using the LED chip with suitable excitation wavelength in the NUV spectral range and prepared PiG composite with optimised thickness, so that optimal emission characteristic will be achieved.
Duration: 1.8.2018 - 31.7.2022
New High - Entropy Ceramics for Advanced Applications
Nové vysoko-entropické keramické materiály pre pokročilé aplikácie
Program: SRDA
Project leader: prof. RNDr. Šajgalík Pavol DrSc.
Duration: 1.7.2020 - 30.6.2024
Advanced materials with eutectic microstructure for high temperature and functional applications
Pokročilé materiály s eutektickou mikroštruktúrou pre vysokoteplotné funkčné aplikácie
Program: SRDA
Project leader: Ing. Prnová Anna PhD.
Duration: 1.7.2020 - 30.6.2024
Insight into the mechanism of interactions of pollutants adsorbed on the surface of aluminosilicate structures
Porozumenie mechanizmu interakcií znečisťujúcich látok adsorbovaných na povrchu aluminosilikátových štruktúr
Program: VEGA
Project leader: Ing. Scholtzová Eva CSc.
Annotation:Proposed project presents a combined theoretical and experimental research of surface complexes formed by selected pollutants (oxyanions, herbicides, medicaments) on layered aluminosilicates (LAS) and aluminosilicate nanotubes (ASN). The pollutants can be strongly dismantled by adsorption on aluminosilicates, e.g. from polluted water. The study of these surface complexes will be focused on the detailed (molecular scale) description and understanding of the interactions responsible for the formation and stability of the complexes. Further, the effect of solvent on the stability of the complexes will be investigated as well. Molecular modelling approach, mainly based on the density functional theory (DFT) will bring a new knowledge about structure and properties of LAS/ASN surfaces and their ability to form stable complexes with pollutants. The results from experiments will be also interpreted by help of the modelling outputs to get a complex characterization of the pollutant-aluminosilicate complexes.
Duration: 1.1.2019 - 31.12.2022
Potential of layered aluminosilicates as excellent guests to accommodate polymeric cations: design of new composite materials
Potenciál vrstevnatých aluminosilikátov ako excelentných nosičov polykatiónov: dizajnovanie nových kompozitných nanomateriálov
Program: VEGA
Project leader: Ing. Pálková Helena PhD.
Annotation:The project is aimed at the preparation of composite materials based on layered aluminosilicates as suitable carriers for different types of organic polycations, possessing properties interesting for various applications. The variability in the chemical composition of the selected layered materials in connection with the diversity of the molecular structures and properties of polymeric cations and copolymers opens up wide opportunities towards the preparation of well-defined systems. Careful selection of the inorganic carries and polycations is an essential step to achieve their mutual compatibility resulting not only in preserving but primarily in improving the key properties of the prepared composites. Therefore, the synthesis conditions (e.g. pH) and the addition of another component to the systems (fluorescent dyes, metal nanoparticles) will be evaluated. The cytotoxicity test to predict biocompatibility of the materials, photoactivity, catalytic and adsorption efficiency will be assessed as well.
Duration: 1.1.2021 - 31.12.2024
Polymer surfaces modified with layered nanoparticles and photoactive dyes
Povrchy polymérov modifikované vrstevnatými nanočasticami a fotoaktívnymi farbivami
Program: SRDA
Project leader: Ing. Pálková Helena PhD.
Annotation:The project is an interdisciplinary basic research on nanocomposites of technically used polymers whose functionality depends on the properties of the organic dyes present. The aim will be to provide nanocomposites with an increased particle concentration on the surface of the polymer. The particles must be pretreated with organic surfactants prior to the synthesis of nanocomposites to achieve compatibility with the polymer, which will be one of the main tasks of the project. In the next step, the modified particles will be functionalized with dye molecules and used to prepare nanocomposite. The surface functionality will be achieved by suitably selected dyes with interesting photophysical and photochemical properties. The goal will be to obtain surfaces which are attractive in terms of possible applications such as photosensitizing and photo-disinfecting properties, luminescent surfaces, systems capable of intermolecular light energy resonance transfer, etc. The selection of the dyes used will be directed to both to commercially available laser dyes and to photosensitizers mainly from the xanthene and thiazine dye groups, as well as to newly prepared fluorescent dyes.
Duration: 1.7.2019 - 30.6.2023
Preparation and characterization granuls/microspheres based on silicon nitride for bioapplications
Príprava a charakterizácia granúl / mikroguličiek na báze nitridu kremičitého pre bioaplikácie
Program: VEGA
Project leader: doc. Ing. Hnatko Miroslav PhD.
Annotation:The use of silicon nitride in bio-applications is timely and very prospective topic especially in last five years and there are some studies which confirmed the possibility of using silicon nitride as human bone implants. Proposed project will be concerned with preparation and characterization of porous granules and microspheres with mean diameter above 0.3 mm and below 100 m, respectively, in the system silicon nitride/bioactive additives, e.g. hydroxyapatite, tricalcium phosphate and bioglass. Granules will be prepared using freeze granulation technique by spraying appropriate suspension into the liquid nitrogen, subsequent lyophilisation and sintering of obtained granulate. Hydroxyapatite as bioactive aid will be infiltrated into the porous granules in the form of sol, dried and thermally treated to crystalline form. Mechanical properties and biological response of as prepared composites will be studied in detail. Microspheres with various contents of bioactive aids will be prepared using flame synthesis. Influence of addition of bioactive species will be studied with respect to the phase and chemical composition as well as processing results (size, porosity, etc.) and biological response of microspheres. Goal of proposed project is to study the applicability of such structures made of so-called advanced ceramics – silicon nitride – in various bioapplications. Within the project an attention will be paid to increasing of mechanical properties of calcium-phosphate cements by incorporation of silicon nitride spheres; influence on setting time, resorbability and biological response of cement/ceramic composites will be a topic. The usability of granules or microspheres for fabrication of 3D trabecular structures with appropriate strength and porosities will be verified.
Duration: 1.1.2018 - 31.12.2021
Structure and properties of bioactive glasses doped with ions with potential therapeutic and antibacterial effects
Štruktúra a vlastnosti bio aktívnych skiel dopovaných iónmi s potenciálne terapeutickými a antibakteriálnymi účinkami
Program: VEGA
Project leader: doc. Ing. Chromčíková Mária PhD.
Duration: 1.1.2020 - 31.12.2023
Building a centre for advanced material application SAS
Vybudovanie centra pre využitie pokročilých materiálov SAV
Program:
Project leader: doc. Ing. Hnatko Miroslav PhD.
Annotation:Predkladaný projekt je komplementárny k projektu v rámci programu H2020 WIDESPREAD-1-2014-Teaming - Building-up Centre of Excellence for advancedmaterials application CEMEA, No. 664337, ktorý získal Seal of excellence a odporúčanie pre národné financovanie. Miesto realizácie projektu je Bratislavský kraj.Cieľom projektu je etablovať v SAV organizáciu Centrum pre využitie pokročilých materiálov SAV, centrum špičkového nezávislého výskumu so zameraním namodifikáciu povrchov a rozhraní pre nové funkcionality štruktúr a prvkov v oblasti pokročilých (nano)materiálov, udržateľnej energie a biomedicíny. Ide o výskumnových nízkorozmerných (LD) nanomateriálov, nových kompozitov a vrstvových štruktúr so zlepšenými alebo novými vlastnosťami zaujímavými pre aplikácie.Výskumná téma pokrýva 6 oblastí výskumu - podaktivít projektu. Projekt podporuje okrem žiadateľa SAV, 7 výskumných inštitúcií (ElU SAV, FU SAV, UPo SAV,UMMS SAV, UACH SAV, BMC SAV a CEMEA SAV).Merateľné ukazovatele: 48 publikácií, 40 tis.EUR podpora registrácie práv duševného vlastníctva, 22 mil. EUR podpora na rekonštrukciu a modernizáciu zariadeníVI, 390 tis.EUR komplementárne financovanie H2020, 30 pozícií pre nových výskumníkov a 10 podporených účastí zahraničných expertov, 3 podané patentovéprihlášky.
Duration: 1.7.2019 - 30.6.2023
Development and characterisation of spherical microparticles for preparation of advanced 3D glass and glass-ceramic structures
Vývoj a charakterizácia sférických mikročastíc vhodných na prípravu 3D sklených a sklo-keramických štruktúr
Program: VEGA
Project leader: Ing. Michálková Monika PhD.
Annotation:This project addresses the development of new materials in the form of vitreous microspheres, prepared via flame synthesis, and their utilization in 3D glass and glass-ceramic structures. The project focuses on the optimization of the flame synthesis parameters (i.e. the length vs temperature of flame ratio, the red-ox conditions of ignition, or the precursor feeding rate). These conditions influence the chemistry, structure, and morphology of synthesized microspheres. Full, hollow and porous microspheres will be prepared in aluminate, silicate, borate and boro-silicate systems, which, in many cases such compositions are difficult to achieve via conventional glass-making methods. Hollow and porous microspheres will be prepared via alkali activation or the addition of porogens. Microspheres will be used for the preparation of advanced 3D structures via the Additive Manufacturing Technology (3D print), which utilizes Direct Light Processing, Direct Ink Writing and Hot Isostatic pressing
Duration: 1.1.2020 - 31.12.2023
Development of the bioactive silicon nitride by surface modification
Vývoj bioaktívneho nitridu kremičitého modifikáciou povrchovej vrstvy
Program: SRDA
Project leader: Mgr. Tatarková Monika PhD.
Duration: 1.7.2019 - 31.12.2022
Development of tools for advanced analysis and prediction of parameters of EPR, NMR and pNMR spectra of complex systems containing heavy elements
Vývoj nástrojov pre pokročilú analýzu a predikciu parametrov spektier EPR, NMR a pNMR komplexných systémov obsahujúcich ťažké prvky
Program: SRDA
Project leader: Dr. Malkin Oľga DrSc.
Annotation:The project is oriented to the development and implementation of new computational tools for advanced prediction and analysis of parameters of EPR, NMR and pNMR spectra of complex systems containing heavy elements with the stress on systems possessing low-lying excited states. Low-lying excited states strongly affect EPR and pNMR parameters and they must be taken into account for accurate prediction of these parameters. The calculation and interpretation of properties of low-lying excited states requires a more advanced methodology than the calculation of ground state properties. Nowadays one of the best approaches for treating excited states of large systems is the time-dependent DFT method (TDDFT). Recently our group implemented relativistic four-component and twocomponent TDDFT methods and made some preliminary steps towards calculations of EPR properties for the excited states. In this project we plan to further develop the TDDFT methodology in order to improve the accuracy of the predicted pNMR parameters for systems with low-lying excited states. We also plan to develop and implement new tools for better interpretation of EPR, NMR and pNMR parameters for heavy-element compounds. Finally the developed methods would be applied for systems of real chemical interest in collaboration with our foreign partners from experimental groups.
Duration: 1.7.2020 - 30.6.2024
Development of refractory pyrochlore phases for high temperature applications of non-oxide ceramics
Vývoj žiaruvzdorných pyrochlórnych fáz pre vysokoteplotné aplikácie neoxidovej keramiky
Program: SRDA
Project leader: Ing. Tatarko Peter PhD.
Annotation:The project proposes a new and innovative approach to develop diboride ceramics. This will be achieved by the incorporation of a new style of additives, rare earth elements, into the transition metal diboride ceramics that would form refractory pyrochlore phases in the oxide layer during the exposure of the materials in oxidizing environments at very high temperatures. The project relies on the fact that the presence of the pyrochlore phases will increase immiscibility and viscosity of the in-situ formed glass layer during oxidation. This, along with the refractory nature of the pyrochlore phases, will stabilise the oxide layer and significantly reduce the oxidation kinetics. By performing a systematic study, the project will acquire new knowledge on the influence of different types and amounts of rare earth additives on the densification, microstructure and phase evolution, and mechanical properties of ceramic materials for thermal protection systems and other applications in aerospace industry. The ultimate aim of the project is to develop a new diboride ceramics with significantly improved oxidation and ablation resistance due to a unique material composition. The output of the project will be a clarification of the formation of pyrochlore phases, their distribution in the final oxide layer, and at the end their effect on the high temperature properties.
Duration: 1.8.2018 - 30.6.2022

The total number of projects: 22