Facebook Instagram Twitter RSS Feed PodBean Back to top on side

A fixed point approach to the stability of a quadratic functional equation in modular spaces without $Δ2$ conditions: Real Functions and Algebra

In: Tatra Mountains Mathematical Publications, vol. 86, no. 1
Parbati Saha - Nabin C. Kayal - Binayak S. Choudhury - Santu Dutta - Sankar Prasad Mondal
Detaily:
Strany: 47 - 64
Jazyk: eng
Kľúčové slová:
quadratic functional equation, Hyers-Ulam-Rassias stability, even function, odd function, modular space
Typ článku: Mathematics
Typ dokumentu: scientific paper pdf
O článku:
In this paper, we investigate the Hyers-Ulam-Rassias stability property of a quadratic functional equation. The even and odd cases for the corresponding function are treated separately before combining them into a single stability result. The study is undertaken in a relatively new structure of modular spaces. The theorems are deduced without using the familiar $Δ2$-property of that space. This implicated the proofs. In the proofs, a fixed point methodology is used for which a modular space version of Banach contraction mapping principle is utilized. Several corollaries and an illustrative example are provided.
Ako citovať:
ISO 690:
Saha, P., Kayal, N. C., Choudhury, B. S., Dutta, S., Mondal, S. P. 2024. A fixed point approach to the stability of a quadratic functional equation in modular spaces without $Δ2$ conditions: Real Functions and Algebra. In Tatra Mountains Mathematical Publications, vol. 86, no.1, pp. 47-64. 1210-3195. DOI: https://doi.org/10.2478/tmmp-2024-0016

APA:
Saha, P., Kayal, N. C., Choudhury, B. S., Dutta, S., Mondal, S. P. (2024). A fixed point approach to the stability of a quadratic functional equation in modular spaces without $Δ2$ conditions: Real Functions and Algebra. Tatra Mountains Mathematical Publications, 86(1), 47-64. 1210-3195. DOI: https://doi.org/10.2478/tmmp-2024-0016
O vydaní:
Vydavateľ: Mathematical Institute, Slovak Academy of Sciences, Bratislava
Publikované: 30. 9. 2024
Verejná licencia:
https://creativecommons.org/licenses/by-nc-nd/4.0/