In: Tatra Mountains Mathematical Publications, vol. 81, no. 1
Sadaf Fakri Moghaddam - Alireza Kamel Mirmostafaee
Detaily:
Rok, strany: 2022, 155 - 164
Jazyk: eng
Kľúčové slová:
numerical radius, inner product, $\ell^p$-sum.
Typ článku: Applied Mathematics
Typ dokumentu: scientific paper pdf
O článku:
We study the numerical radius of bounded operators on direct sum of a family of Hilbert spaces with respect to the $\ellp$-norm, where $1 ≤ p ≤ ∞.$ We propose a new method which enables us to prove validity of many inequalities on numerical radius of bounded operators on Hilbert spaces when the underling space is a direct sum of Hilbert spaces with $\ellp$-norm, where $1 ≤ p ≤ 2$. We also provide an example to show that some known results on numerical radius are not true for a space that is the set of bounded operators on $\ellp$-sum of Hilbert spaces where $2≤ p ≤ ∞$. We also present some applications of our results.
Ako citovať:
ISO 690:
Moghaddam, S., Mirmostafaee, A. 2022. Numerical radius of bounded operators with $\ellp$-norm. In Tatra Mountains Mathematical Publications, vol. 81, no.1, pp. 155-164. 1210-3195. DOI: https://doi.org/10.2478/tmmp-2022-0012
APA:
Moghaddam, S., Mirmostafaee, A. (2022). Numerical radius of bounded operators with $\ellp$-norm. Tatra Mountains Mathematical Publications, 81(1), 155-164. 1210-3195. DOI: https://doi.org/10.2478/tmmp-2022-0012
O vydaní:
Vydavateľ: Mathematical Institute, Slovak Academy of Sciences, Bratislava
Publikované: 22. 12. 2022
Verejná licencia:
https://creativecommons.org/licenses/by-nc-nd/4.0/