Facebook Instagram Twitter RSS Feed Back to top

The absolutely strongly star-Hurewicz property with respect to an ideal

In: Tatra Mountains Mathematical Publications, vol. 76, no. 2
Sumit Singh - Brij K. Tyagi - Vinod K. Bhardwaj
Detaily:
Rok, strany: 2020, 81 - 94
Jazyk: eng
Kľúčové slová:
Hurewicz, absolutely strongly star-Hurewicz, strongly star-Hurewicz, Menger, absolutely strongly star-Menger, strongly star-Menger, covering, ideal, topological space.
Typ článku: Mathematics - Real Functions
Typ dokumentu: Scientific paper
O článku:
A space $X$ is said to have the absolutely strongly star-$ \mathcal{I} $-Hurewicz (ASS$ \mathcal{I} $H) property if for each sequence $ (\mathcal{U}n: n \in \mathbb{N}) $ of open covers of $X$ and each dense subset $Y$ of $X$, there is a sequence $ (Fn: n \in \mathbb{N}) $ of finite subsets of $Y$ such that for each $ x \in X $, $ \{n \in \mathbb{N}: x \notin \St(Fn, \mathcal{U}n) \} \in \mathcal{I}$, where $ \mathcal{I} $ is the proper admissible ideal of $ \mathbb{N} $. In this paper, we investigate the relationship between the ASS$ \mathcal{I} $H property and other related properties and study the topological properties of the ASS$\mathcal{I} $H property. This paper generalizes several results of Song [SYKH] to the larger class of spaces having the ASS$ \mathcal{I} $H properties.
Ako citovať:
ISO 690:
Singh, S., Tyagi, B., Bhardwaj, V. 2020. The absolutely strongly star-Hurewicz property with respect to an ideal. In Tatra Mountains Mathematical Publications, vol. 76, no.2, pp. 81-94. 1210-3195. DOI: https://doi.org/10.2478/tmmp-2020-0020

APA:
Singh, S., Tyagi, B., Bhardwaj, V. (2020). The absolutely strongly star-Hurewicz property with respect to an ideal. Tatra Mountains Mathematical Publications, 76(2), 81-94. 1210-3195. DOI: https://doi.org/10.2478/tmmp-2020-0020
O vydaní:
Vydavateľ: Mathematical Institute, Slovak Academy of Sciences, Bratislava
Publikované: 20. 10. 2020
Verejná licencia:
The Creative Commons Attribution-NC-ND 4.0 International Public License