Facebook Instagram Twitter RSS Feed Back to top

Hahn-Banach and sandwich theorems for equivariant vector lattice-valued operators and applications

In: Tatra Mountains Mathematical Publications, vol. 76, no. 2
Antonio Boccuto
Detaily:
Rok, strany: 2020, 11 - 34
Jazyk: eng
Kľúčové slová:
vector lattice, amenability, Hahn-Banach theorem, sandwich theorem, Fenchel duality theorem, subgradient, subdifferential, Moreau-Rockafellar formula, Farkas theorem, Kuhn-Tucker theorem
Typ článku: Mathematics - Real Functions
Typ dokumentu: Scientific paper
O článku:
We prove Hahn-Banach, sandwich and extension theorems for vector lattice-valued operators, equivariant with respect to a given group $G$ of homomorphisms. As applications and consequences, we present some Fenchel duality and separation theorems, a version of the Moreau-Rockafellar formula and some Farkas and Kuhn-Tucker-type optimization results. Finally, we prove that the obtained results are equivalent to the amenability of $G$.
Ako citovať:
ISO 690:
Boccuto, A. 2020. Hahn-Banach and sandwich theorems for equivariant vector lattice-valued operators and applications. In Tatra Mountains Mathematical Publications, vol. 76, no.2, pp. 11-34. 1210-3195. DOI: https://doi.org/10.2478/tmmp-2019-0015

APA:
Boccuto, A. (2020). Hahn-Banach and sandwich theorems for equivariant vector lattice-valued operators and applications. Tatra Mountains Mathematical Publications, 76(2), 11-34. 1210-3195. DOI: https://doi.org/10.2478/tmmp-2019-0015
O vydaní:
Vydavateľ: Mathematical Institute, Slovak Academy of Sciences, Bratislava
Publikované: 20. 10. 2020
Verejná licencia:
The Creative Commons Attribution-NC-ND 4.0 International Public License