Facebook Instagram Twitter RSS Feed Back to top

Local-periodic solutions for functional dynamic equations with infinite delay on changing-periodic time scales

In: Mathematica Slovaca, vol. 68, no. 6
Chao Wang - Ravi P. Agarwal - Donal O Regan
Detaily:
Rok, strany: 2018, 1397 - 1420
Kľúčové slová:
Changing-periodic time scales, local phase space, functional dynamic equations, infinite delay, local-periodic solutions
O článku:
In this paper, by using the concept of changing-periodic time scales and composition theorem of time scales introduced in 2015, we establish a local phase space for functional dynamic equations with infinite delay (FDEID) on an arbitrary time scale with a bounded graininess function $\mu$. Through Krasnosel'skiĭ's fixed point theorem, some sufficient conditions for the existence of local-periodic solutions for FDEID are established for the first time. This research indicates that one can extract a local-periodic solution for dynamic equations on an arbitrary time scale with a bounded graininess function $\mu$ through some index function.
Ako citovať:
ISO 690:
Wang, C., Agarwal, R., O Regan, D. 2018. Local-periodic solutions for functional dynamic equations with infinite delay on changing-periodic time scales. In Mathematica Slovaca, vol. 68, no.6, pp. 1397-1420. 0139-9918. DOI: https://doi.org/10.1515/ms-2017-0190

APA:
Wang, C., Agarwal, R., O Regan, D. (2018). Local-periodic solutions for functional dynamic equations with infinite delay on changing-periodic time scales. Mathematica Slovaca, 68(6), 1397-1420. 0139-9918. DOI: https://doi.org/10.1515/ms-2017-0190
O vydaní:
Publikované: 3. 12. 2018