Facebook Instagram Twitter RSS Feed Back to top

A categorical equivalence for bounded distributive quasi lattices satisfying: \boldmath $x\lor 0 = 0 \implies x = 0$

In: Mathematica Slovaca, vol. 64, no. 5
Hector Freytes - Antonio Ledda
Detaily:
Rok, strany: 2014, 1105 - 1122
Kľúčové slová:
bounded distributive quasi lattices, Priestley duality, sheaves
O článku:
In this work, we investigate a categorical equivalence between the class of bounded distributive quasi lattices that satisfy the quasiequation $x \lor 0 = 0 \implies x = 0$, and a category whose objects are sheaves over Priestley spaces.
Ako citovať:
ISO 690:
Freytes, H., Ledda, A. 2014. A categorical equivalence for bounded distributive quasi lattices satisfying: \boldmath $x\lor 0 = 0 \implies x = 0$. In Mathematica Slovaca, vol. 64, no.5, pp. 1105-1122. 0139-9918. DOI: https://doi.org/10.2478/s12175-014-0262-2

APA:
Freytes, H., Ledda, A. (2014). A categorical equivalence for bounded distributive quasi lattices satisfying: \boldmath $x\lor 0 = 0 \implies x = 0$. Mathematica Slovaca, 64(5), 1105-1122. 0139-9918. DOI: https://doi.org/10.2478/s12175-014-0262-2
O vydaní: