Facebook Instagram Twitter RSS Feed PodBean Back to top on side

The Effects of Transfer of Global Improvements in Genetic Programming

In: Computing and Informatics, vol. 23, no. 4
Ricardo Aler - David Camacho - Alfredo Moscardini

Details:

Year, pages: 2004, 377 - 394
Keywords:
Automatically defined functions, cultural evolution, co-evolution, genetic programming
About article:
Koza has shown how Automatically Defined Functions (ADFs) can reduce computational effort in the genetic programming paradigm. In Koza's Automatically Defined Functions, as well as in standard genetic programming, an improvement in a part of a program (an ADF or a main body) can only be transferred to other individuals in the population via crossover. In this article, we consider whether it is a good idea to transfer immediately improvements found by a single individual to other individuals in the population. A system that implements this idea has been proposed and tested for the even-5-parity, even-6-parity, and even-10-parity problems. Results are very encouraging: computational effort is reduced (compared to Koza's ADFs) and the system seems to be less prone to early stagnation. Also, as evolution occurs in separate populations, our approach permits to parallelize genetic programming in another different way.
How to cite:
ISO 690:
Aler, R., Camacho, D., Moscardini, A. 2004. The Effects of Transfer of Global Improvements in Genetic Programming. In Computing and Informatics, vol. 23, no.4, pp. 377-394. 1335-9150.

APA:
Aler, R., Camacho, D., Moscardini, A. (2004). The Effects of Transfer of Global Improvements in Genetic Programming. Computing and Informatics, 23(4), 377-394. 1335-9150.