Facebook Instagram Twitter RSS Feed Back to top

On independent sets

In: Mathematica Slovaca, vol. 55, no. 4
A. D. Forbes - M. J. Grannell - T. S. Griggs


Year, pages: 2005, 375 - 377
About article:
In a general set-theoretic context, an independent set is defined as a set which avoids certain specified structures called blocks. A formula is given for the number of independent sets of cardinality $k$ in terms of the numbers of configurations (i.e. non-empty collections) of blocks.
How to cite:
ISO 690:
Forbes, A., Grannell, M., Griggs, T. 2005. On independent sets. In Mathematica Slovaca, vol. 55, no.4, pp. 375-377. 0139-9918.

Forbes, A., Grannell, M., Griggs, T. (2005). On independent sets. Mathematica Slovaca, 55(4), 375-377. 0139-9918.