Facebook Instagram Twitter RSS Feed Back to top

The generalized Fermat conjecture

In: Mathematica Slovaca, vol. 69, no. 2
Adalberto García-Máynez - Margarita Gary - Adolfo Pimienta Acosta


Year, pages: 2019, 321 - 326
tangent, Fermat curve, Chebyshev polynomials
About article:
If $a,b,c$ are non-zero integers, we considerer the following problem: for which values of $n$ the line $ax+by+cz=0$ may be tangent to the curve $xn+yn=zn$? We give a partial solution: if $n=5$ or if $n-1$ is a prime a number, then the answer is the line cannot be tangent to the curve. This problem is strongly related to Fermat's Last Theorem.
How to cite:
ISO 690:
García-Máynez, A., Gary, M., Acosta, A. 2019. The generalized Fermat conjecture. In Mathematica Slovaca, vol. 69, no.2, pp. 321-326. 0139-9918. DOI: https://doi.org/10.1515/ms-2017-0225

García-Máynez, A., Gary, M., Acosta, A. (2019). The generalized Fermat conjecture. Mathematica Slovaca, 69(2), 321-326. 0139-9918. DOI: https://doi.org/10.1515/ms-2017-0225
About edition:
Published: 27. 3. 2019