Facebook Instagram Twitter RSS Feed Back to top

Quasi-Monte Carlo integration in unanchored Sobolev spaces

In: Mathematica Slovaca, vol. 64, no. 5
Jana Fialová

Details:

Year, pages: 2014, 1135 - 1144
Keywords:
QMC integration, squared worst-case QMC error, Hilbert space with reproducing kernel, unanchored Sobolev space, centered regular lattice, tent function
About article:
We find a concrete sequence of $N$ points, for which the squared worst-case quasi-Monte Carlo error in the Hilbert space of continuous functions defined on $[0,1]$ with square integrable second derivative is smaller than for the centered regular lattice point set.
How to cite:
ISO 690:
Fialová, J. 2014. Quasi-Monte Carlo integration in unanchored Sobolev spaces. In Mathematica Slovaca, vol. 64, no.5, pp. 1135-1144. 0139-9918. DOI: https://doi.org/10.2478/s12175-014-0264-0

APA:
Fialová, J. (2014). Quasi-Monte Carlo integration in unanchored Sobolev spaces. Mathematica Slovaca, 64(5), 1135-1144. 0139-9918. DOI: https://doi.org/10.2478/s12175-014-0264-0
About edition: