Facebook Instagram Twitter RSS Feed PodBean Back to top on side

The list of national projects SAS

Institute of Construction and Architecture

Comprehensive model of light pollution propagation into the ambient environment

Komplexný model šírenia svetelného znečistenia do okolitého prostredia

Duration: 1.7.2023 - 30.6.2027
Program: SRDA
Project leader: Mgr. Kocifaj Miroslav DrSc.
Annotation:The proliferation of outdoor artificial light at night is a global challenge that relates strongly to cities. The brightening of the night sky due to the phenomenon of skyglow touches on many social concerns from urban ecology to human health, energy security, and sustainability and climate change. Knowledge of the hemispherical night sky brightness (NSB) produced by ongoing expansion of outdoor lighting systems is a necessary step for characterizing the nighttime environment and monitoring the evolution of night sky quality. We intend to develop a comprehensive NSB model applicable for any site worldwide, while respecting the atmospheric conditions prevailing at the respective locality. By achieving an excellent match between theory and experiment, the model will (1) accurately assess the environmental impact of new outdoor lighting installations; (2) investigate the relationship between light pollution and other forms of environmental pollution; (3) elucidate how the nature of anthropogenic particles in the atmosphere relates to the formation of skyglow over cities; (4) predict how much light at night reaches the ground in and near cities; and (5) determine the value of specific outdoor lighting modernization efforts in reducing light pollution. Our strategy to develop a comprehensive model is to derive governing equations in analytic forms in order to provide a deep physical insight to the problem solved, interpret of the role of each parameter, discover dependencies otherwise hidden or unknown, and construct theoretically well-founded approximations. We will solve the vector radiative transfer equation in the Earth’s atmosphere, while determining Stokes parameters for arbitrary cloud coverage or light emissions from artificial sources. Through a combination of radiative transfer modeling and experimental validation, we deliver novel NSB mitigation strategies.

Measuring and Modelling Light Pollution

Meranie and modelovanie svetelného znečistenia

Duration: 1.9.2022 - 31.8.2025
Program: SASPRO
Project leader: Dr. Wallner Stefan BSc MSc
Annotation:This project aims to investigate various approaches in measuring and modelling of the global phenomenon of light pollution, artificial light at night which is misdirected, overilluminated and/or makes use of harmful light. The ever-worsening phenomenon impairs not only the visibility of objects on the night sky, furthermore it is a major threat for all organisms worldwide, including human health suffering from impacts. Research goals of MEMOLIPO include a greater understanding of atmospheric impacts on the night sky brightness and how currently used measurement devices can show new approaches in their application. Firstly, light monitoring network data underly strong seasonal variations which can potentially falsify long-term analyses of light pollution development. Such must be included in order to rightly give statements about increases or decreases in night sky brightness values. Another research issue is the impact caused by atmospheric elements like the aerosol optical depth. Latter will be investigated by meteorological ceilometer backscatter data, providing data for this issue in an unprecedented accuracy. Furthermore, airborne vehicles will be tested as potential devices to characterize atmospheric layers. Moreover, it will be tested if easy retrievable ground-based measurements can approximate the city emission function, a very important input for theoretical modelling. And finally, allsky measurements will show, how far light domes from light emitting cities are visible and could influence night skies above natural protected areas. Results from this project lead to important insights in the understanding of skyglow phenomena and serve as inputs for modelling approaches in the future. Outcomes shall also be used for research disciplines of other fields, since it creates new fundaments for nature related studies in, e.g., ecology, biology and environmental physics, or technical studies like lighting management, sustainability and energy saving purposes.

Study of multicomponent cement material degradation under conditions simulating CO2 enriched geothermal environment

Štúdium degradácie viaczložkových cementových materiálov v dôsledku uhličitej korózie v podmienkach simulujúcich geotermálne vrty

Duration: 1.1.2021 - 31.12.2024
Program: VEGA
Project leader: Ing. Kuzielová Eva PhD.
Annotation:Justness of detailed study of degradation due to CO2 enriched geothermal environment is conditioned by development of new multicomponent, even lightweight, cementitious materials, which can be used for cementing in geothermal wells as well as by potential of geological sequestration of CO2. The project is focused on complex investigation of degradation mechanism at high temperatures and pressures, which is simultaneously affected by composition of geothermal water, hydration, pozzolanic and latent hydraulic reactions, but also by high-temperature transformations of primary reaction products. It is important to study carbonic corrosion from initial stage of hydration and to focus on synergism of different types of reactions in dependence on composition, physical and chemical basis of the used additives. The investigation under the conditions affecting kinetics and thermodynamics of reactions and evaluation of their impact on utility properties will allow the optimization of multicomponent cement compositions.

Research and development of multi-component cementitious blends for special construction materials

Výskum a vývoj mnohozložkových cementových zmesí pre špeciálne konštrukčné materiály

Duration: 1.7.2020 - 30.6.2024
Program: SRDA
Project leader: Prof.Dr.Ing. Palou Martin-Tchingnabé
Annotation:The study of chemistry, phase evolution, and phase equilibrium during the hydration of multicomponent cementitious materials is a key challenge in the development of construction materials with high performance. Therefore, 1. the present project deals with the complex study of the effect of normal and hydrothermal curing conditions on hydration reaction of multicomponent cementitious binders for the objective of optimizing the composition of cementitious composites for high-temperature hydrothermal wells; 2. the project will develop heavyweight concrete based on the optimized composition of multicomponent cementitious binders and high-density aggregates. The concrete design will take into consideration the radioactive isotopes, in order to minimize the activation effect of gamma and neutron radiations, when it comes to being used as biological shielding in power nuclear plants; 3. the purpose of the present project is the development of advanced concrete materials, unique in its kind; Fiber-Reinforced Heavyweight Self-Compacting Mortars with special protection properties against ballistic missiles. The common denominator of these objectives is the chemistry of hydration reaction, including kinetics and mechanisms, phase evolution, and equilibrium of composites comprising Ordinary Portland (OPC) cement and Supplementary Cementitious Materials (SCMs). Different curing regimes (ordinary, hydrothermal), complex chemical analysis including radioactive isotopes of each ingredient, the particle size distribution of binders and aggregates are some of the main factors which are the driving forces for the implementation of the submitted project.

Improving Structural Safety and Energy Efficiency Through Development of Extreme Temperature Resistant Sustainable Cement-Based Composites with Post-Fire Self-Healing Features

Zlepšenie štrukturálnej bezpečnosti a energetickej účinnosti prostredníctvom vývoja trvalo udržateľných cementových kompozitov na báze cementu odolných voči extrémnym teplotám s funkciami samoopravenia po požiari

Duration: 1.9.2022 - 31.8.2025
Program: SASPRO
Project leader: Mgr. Vedrtnam Ajitanshu

The total number of projects: 5