Facebook Instagram Twitter RSS Feed PodBean Back to top on side

The list of international projects SAS

Institute of Materials Research

Strengthening and plasticity of high-entropy ultra-high temperature carbides

Spevnenie a plasticita vysokoentropických ultra vysokoteplotných karbidov

Duration: 1.7.2021 - 30.6.2024
Program: Other
Project leader: MSc. Csanádi Tamás PhD.

High performance duplex ceramics for efficient maschining of nickel superalloysd

Vysoko odolná duplexná keramika pre efektívne obrábasnie niklových superzliatin

Duration: 1.6.2022 - 31.5.2025
Program: ERANET
Project leader: prof. RNDr. Dusza Ján DrSc.

Development and characterization of bioceramic systems modified by thermosetting biopolymers

Vývoj a charakterizácia biokeramických systémov modifikovaných termosetovými biopolymérmi

Duration: 1.1.2023 - 31.12.2024
Program: Mobility
Project leader: RNDr. Sopčák Tibor PhD.
Annotation:Development of biomaterials consisting of bioceramics as matrix enriched with various polymers is a long-standing challenge when preparing synthetic bone substitutes. The combination of both materials can serve several purposes: the inorganic ceramic phase ensures the outstanding bioactivity, osteoconductivity and osteoinductivity, while the polymer component is responsible for the enhanced mechanical reinforcement and improved biodegradation. In view of above, the present project will be oriented towards the production and characterization of bioceramic systems modified with a thermoset biopolymer coating. A great emphasis will be given on the synthesis of polyol citrate thermosetting polymers and their effective incorporation on the surface of bioceramic matrix. Beside that, a detailed analysis of the effect of polymer addition on the microstructural, phase, mechanical, and in-vitro cellular properties of bioceramic systems will be thoroughly studied using several characterization techniques. It is anticipated, that our results should expand knowledge in the field of polymer/bioceramic composites and will provide useful directions in their further design for potential use in biomedicine.

Developoment and processing of advanced metal hydride composites with specific microstructure properties for mobile hydrogen storage applications

Vývoj a spracvovanie pokročilých metalhydidových kompozitných materiálov pre uskladnenie vodíka určených pre mobilné aplikácie

Duration: 1.5.2023 - 30.4.2026
Program: ERANET
Project leader: RNDr. Nigutová Katarína PhD.

Development of Advanced Magnesium Alloys for Multifunctional Applications in Extreme Environments

Vývoj pokročilých horčíkových zliatin pre multifunkčné aplikácie v extrémnych prostrediach

Duration: 1.11.2021 - 31.10.2024
Program: International Visegrad Fund (IVF)
Project leader: doc. RNDr. Lofaj František DrSc.

Enhancement of Hydrogen Storage Properties of AlTiVCr Light Weight High Entropy Alloys (HEA) by Ti3C2 Mxene and Several Plastic Deformation

Zvýšenie uskladňovacej schopnosti vodíka v ľahkých vysoko-entropických zliatinách (HEA) typu AlTiVCr prídavkom Ti3C2 Mxenu a veľkej plastickej deformácie

Duration: 1.4.2022 - 31.3.2025
Program: European Interest Group (EIG) CONCERT-Japan
Project leader: doc. Ing. Saksl Karel DrSc.
Annotation:Recently discovered AlTiVCr high entropy alloy (HEA) exhibits about 70x increase in equilibrium pressure, ~20 kJ/mol H2 decrease in desorption enthalpy (ΔH) relative to the benchmark TiVZrNbHf HEA possessing H/M ratio > 2 with 2.7 wt % hydrogens at 53 bar H2. The AlTiVCr HEA desorption enthalpy ΔH is ~40 kJ/mol and H/M ratio ~1. Since AlTiVCr alloy includes lighter-weight elements relative to earlier studied refractory HEAs, it is envisaged that AlTiVCr can be a potential lightweight metal hydride for future hydrogen storage application if its H/m ratio and hydrogenation/dehydrogenation kinetics can be improved. So far, the addition of Mxene (Ti3C2) as catalyst and nanosizing exhibited a significant influence on the kinetics and hydrogenation capacity of Mg metal hydrides independently. Therefore, in this study, we aim to develop a lightweight metal hydride composite of AlTiVCr HEA by the combination of three concepts of HEA, Mxenes (Ti3C2 Mxene) and nanosizing by high-pressure torsion (HPT). The influence of Mxene and deformation heterogeneities will be investigated and will be tailored for achieving lower ΔH, higher H/M ratio and faster kinetics.

The total number of projects: 6