\\//

VERSITA TATRA
MOUNTaINS

Mathematical Publications

DOI: 10.2478/tmmp-2013-0035
Tatra Mt. Math. Publ. 57 (2013), 45-63

CRYPTANALYSIS OF GOST
IN THE MULTIPLE-KEY SCENARIO

Nicoras T. COURTOIS

ABSTRACT. GOST 28147-89 is a well-known 256-bit block cipher. In 2010
GOST was submitted to ISO, to become an international standard. Then many
academic attacks which allow to break full GOST faster than brute force have
been found. The fastest known single-key attack on GOST for 264 of data is
2179 of [Courtois, N.: An improved differential attack on full GOST, Cryptol-
ogy ePrint Archive, Report 2012/138, http://eprint.iacr.org/2012/138] and
for 232 of data it is 2191 of [Courtois, N.: Algebraic complezity reduction and
cryptanalysis of GOST, Preprint, 2010-13, http://eprint.iacr.org/2011/626|.
Other results are slower but require significantly less memory [Courtois, N.: Al-
gebraic complexity reduction and cryptanalysis of GOST, Preprint, 2010-2013,
http://eprint.iacr.org/2011/626], [Dinur, I.—Dunkelman, O.—Shamir, A.:
Improved attacks on full GOST, in: Fast Software Encryption—FSE 12, 19th
Internat. Workshop, Washington, USA, 2012, Lecture Notes in Comput. Sci.,
Vol. 7549, Springer, Berlin, 2012, pp. 9-28,|http://eprint.iacr.org/2011/558/|.
The common stereotype is that these will be “the best” attacks on GOST.
However, ciphers are not used in practice with single keys, on the contrary. In
this paper we intend to show that there exist attacks on GOST which are more
versatile and even somewhat more “practical” than the best single key attack.
We argument that multiple random key attacks not single key attacks, are more
practical and more likely to be executed in the real life. They recover keys when
other attacks recover none. One can break some (weaker) GOST keys in a popu-
lation of 256-bit keys generated at random with a TOTAL computational effort
as low as 2720 this including the cost to examine also the cases in which the
attack does not work. All our attacks are based on special non-trivial properties
of data inside the cipher which however are such that keys for which the property
does not hold can be rejected efficiently.

1. The GOST encryption standard and its security

The Russian encryption standard GOST 28147-89 is an important government
standard [25] which is also widely used by large banks [I5], [24], on the Internet
with OpenSSL [15], and in entreprise security systems (e.g., RSA Labs). Its large
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key size of 256 bits and exceptionally low implementation cost [20] make GOST
a plausible alternative for AES-256 and triple DES.

GOST is a block cipher with a simple Feistel structure, 64-bit block size,
256-bit keys and 32 rounds. Each round contains a key addition modulo 232
a set of 8 bijective S-boxes on 4 bits, and a simple rotation by 11 positions. The
most complete current reference implementation of GOST in the OpenSSL li-
brary contains eight standard sets of S-boxes [15]. The attacks we consider in this
paper, as well as most other recent attacks on GOST from [6], [7], [I7] work with
a very similar complexity whatever are the S-boxes used in GOST. Until 2011,
no cryptographically significant attack on GOST used in encryption was found,
which was summarized in 2010 in these words: “despite considerable cryptan-
alytic efforts spent in the past 20 years, GOST is still not broken”, see [20].
According to Biryukov and Wagner, the structure of GOST, and in par-
ticular the reversed order of keys in the last 8 rounds, makes it secure against
slide attacks [I]. However, this exact inversion of keys allows other so called
“Reflection” attacks. This property marks a turning point in the security of
GOST. Initially at Indocrypt 2008 only a weak-key attack with time complexity
of 2192 is proposed, with large proportion of 2732 of weak keys. Then in 2011
several attacks on regular GOST keys have been discovered, where by regular we
mean typical keys generated at random, this including single key attacks. More
than half of these new attacks use this reflection property, sometimes twice, three
or four times [6], [I7]. Interestingly many other attacks allow to break GOST
without this reflection property [6], [7], [14]. Some are fixed point or involution
attacks, but some are entirely new sorts of self-similarity attacks. Most of these
attacks follow the framework of “Black-Box Complexity Reduction” from [6], [7]
where the problem of attacking full 32-round GOST is reduced to a low-data
complexity attack 8 rounds. Unhappily the quantity of data available after re-
duction is very small, for example 2, 3 or 4 pairs for a reduced cipher. Very few
low-data complexity attacks are known. Accordingly the last step in these at-
tacks is typically either a Meet-In-The-Middle attack [6], [14], [I7] or a software
algebraic attack [6], [7] and recently a combination of both [6], [8]. The best
single-key attacks in this category are an attack with about 2192 GOST compu-
tations [6], [14] with 264 of data and about 2224 GOST computations with 232

of data [6], [14], [17].

In this paper we look at the possibility of obtaining strictly better “Complex-
ity Reductions” for some weaker keys. However, we are not interested in weak
key attacks. We are interested exclusively in attacks which can recover 256-bit
GOST keys generated at random with a total effort being strictly lower than
for a comparable single key attack. The main point is that weak keys and re-
lated keys CAN be exploited in the real life attacks IF they occur with suf-
ficiently high “natural” probability for keys generated at random. The general
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attack scenario on block ciphers, relevant to say a government security agency,
is the multiple key scenario as follows: given 2% devices with distinct keys,
2Y of data per device, and M = 27 of memory, some keys can be recovered at
the total cost of T'= 2% It is surprising that this scenario is almost never stud-
ied in cryptography. This is probably because researchers are not aware of the
fact that this multiple key scenario allows to recover (at least some) keys in
situations where other attacks find none (and in particular all known single key
attacks). Can we demonstrate such a thing for GOST? One basic question is
as follows: given a well-chosen assumption which works for 2=4 of GOST keys,
can we obtain an attack which is more than 24 times faster the the best known
single-key attack? If so we can afford to check also all the cases in which the
attack does not work and overall obtain a more realistic attack than the ref-
erence single key attack. More importantly, in many cases rejecting the cases
where the attack does not work will be easier than expected. We have designed
many such attacks and the security of GOST degrades surprisingly quickly as
X grows. In fact we obtain a whole spectrum of attacks and will show that the
cost of computing one 256-bit GOST key decreases in a very important way
down to 2120 in this multiple key scenario. This at the price of increasing over
data complexity 2% even though in many attacks we need only 232 of data
per device. Somewhere half way there will be attacks where 2¥+Y is not too
large and the computational effort is going to be more realistic than any other
attack on GOST.

This paper is organized as follows: In Section 2 we cover brute force and
reduced-round attacks on GOST. In Section [§] we explain how the para-
digm of Black Box Reduction applies to GOST and in particular we explain
the reflection property as consequence of a particular decomposition of GOST.
In Section M we study 4 basic families of weak key attacks and the detailed cost
of converting them to a “real” attack on multiple random keys. Our results are
summarized in Table [ Section [l followed by a conclusion.

2. Preliminary remarks on GOST

In this paper we call a P/C pair a pair of known Plaintext and Ciphertext
for full GOST, or for a reduced-round version of GOST.

GOST has 64-bit block size and the key size of 256-bit keys. Accordingly:

Fact 2.0.1. 4 P/C pairs are necessary to determine the GOST key. With
4 P/C pairs we expect to get on average about one key. We get the correct key
together with a list of, sometimes a few, but on average less than 1 wrong keys.

With 5 P/C pairs we are able to discard all these wrong keys in practice.
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FACT 2.0.2. A brute force attack on GOST takes 22°° GOST encryptions on av-
erage.

Justification: We proceed as follows: we use one P/C pair and check all the
possible keys. On average half way through the right key will be found. Only
for an expected number of 2!°! keys which are confirmed with the first pair, we
do further comparisons. Most of these 219! are false positives. The key remark
is that the total number of these false positives is small and the complexity
of rejecting all the incorrect keys with additional P/C pairs is actually negligible.

2.1. Low data complexity attacks on reduced-round GOST

Software algebraic attacks, can be defined as attacks in which the problem
of key recovery is written as a problem of solving a large system of Boolean
algebraic equations which follows the geometry and structure of a particular
cryptographic circuit [4]. For block ciphers these attacks typically work only
for a limited number of rounds, for example to break 6 rounds of DES, but this
is possible to do given only 1 known plaintext, see [4]. Our most recent results
are obtained as a combination of earlier software algebraic attacks on DES [4]
with dedicated optimizations for GOST described in [I3] and with highly opti-
mized guess-then-determine steps inspired by Meet-In-The-Middle attacks.

Following [6]:

Fact 2.1.1 (Key Recovery for 8 Rounds and 3 KP). Given 3 P/C pairs for 8
rounds of GOST we can produce 24 candidates for the 256-bit key in time
equivalent to 2" GOST encryptions. The storage requirements are negligible
and all the 264 candidates can be produced in a uniform way, each of them is
produced in time of 2°¢ GOST encryptions on average.

Full justification of this fact takes many pages and appears in Appendix N.3.
page 94 of [6]. A faster attack with only 2'°7 GOST encryptions BUT at the
expense of MUCH larger memory is given in [§]. Similarly we have:

Fact 2.1.2 (Key Recovery for 8 Rounds and 4 KP). Given 4 P/C pairs for 8
rounds of GOST we can recover the full 256-bit key in time equivalent to 2%
GOST encryptions with negligible memory.

In [§] we find two distinct attacks with complexity of 2°¢ for 4 KP. One is
an excessively technical MITM attack with large memory, another is a super
simple software/algebraic/SAT-solver attack with same running time and neg-
ligible memory. The trick is to mimic the structure of a MITM attack and aim
at a software/algebraic inversion attack. The attacker guesses the exact key bits
0-15,51-55,64-66,128-130,179-183,192-207,224-231,244-255 and is able to de-
termine all the other by software.
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3. Cryptanalysis with Black-Box Complexity Reduction

Following [6], [7] the work of cryptanalyst working on cryptanalysis of GOST
can be split into two independent tasks. First task is how to achieve a software
algebraic attack on a reduced-round version as discussed in the previous sec-
tion. The second question is if and how the complexity major variants of full
GOST with 32 rounds can ever be reduced to a problem of breaking a cipher
with significantly less rounds. Only then we can ever hope to be able to apply
results such as Fact Recently it became possible to design and implement
an appropriate last step for many such attacks, cf. Fact and many other
in [6], (5], [14.

The main idea is as follows [6], [7]. In order to reduce the attack complexity,
we exploit the self-similarity of the cipher (due, e.g., to a weak key schedule)
and add some well-chosen assumptions which produce interesting and sometimes
quite non-trivial consequences due to the high-level structural properties of the
cipher, which makes cryptanalysis problems smaller, simpler and easier to solve.
In this process we need to minimise the costs (in terms of probability that our
assumptions hold) and to maximise the benefits (in terms of the number and
the complexity of interesting relations which hold under these assumptions).

This process is called Algebraic Complexity Reduction, see [6], [7].
In most cases what we get is to compute (guess or determine) many internal
values inside one or several decryptions, and literally break the cipher apart
into smaller pieces. In particular we have Black-Box Algebraic Complex-
ity Reductions where we obtain real black-box reductions, for example, to the
same cipher with strictly less rounds (and less data) again at the cost of some
well-chosen assumptions. This creates new important optimisation problems
in symmetric cryptanalysis. Reductions exploit self-similarity of different blocks
and their inverses, fixed points in certain components, and reflections [6], [7].
Reductions can be compared in terms of the number of pairs obtained,
the resulting reduced number of rounds, success probability, and in terms of
data complexity. In this paper we focus on weak key attacks which however are
valuable only if and because, we will be able to achieve time complexities better
than any attack on regular keys from [6], [7], [10], [14].

3.1. High-level structure and properties of GOST

GOST is a Feistel cipher with 32 rounds. In each round we have a round func-
tion f(X) with a 32-bit key which uses a 32-bit segment of the original 256-bit
key which is divided into eight 32-bit sub-keys k = (ko, k1, ka2, k3, ka, ks, ke, k7).
This pattern is repeated 3 times and the the order of keys is inverted.
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Notation: Let S be the function which swaps two halves of a 64-bit word, i.e.,
S(L|R) = R|L. We denote the swapped value by notation A, i.e., S(A4) = A.
In figures we denote S by an explicit graphical notation <.

Following [I8] one can write GOST as the following functional decomposition
(to be read from right to left)

Ency =DoSofo0f0&, (1)

where £ is exactly the first 8 rounds which exploits the whole 256-bit key, S is
the swap function which does not depend on the key, and D is the corresponding
decryption function with EoD =D o & = Id.

Fact 3.1.1 (Internal Reflection Property). Consider the last 16 rounds of GOST
DoSof for one fixed GOST key. This function has an exceptionally large number
of fixed points: applied to X gives the same value X with probability 2732 over
the choice of X, instead of 2764 for a random permutation.

Justification: This comes from the fact that the state of the cipher after the
first 8 rounds & is symmetric with probability 2732 and Do & = Id.

4. Weak key attacks on GOST

Weak keys offer a considerable degree of extra freedom to the attacker. Let d
denote the density of keys for which a given attack works, defined as the prob-
ability that the attack will work for a key chosen uniformly at random. Single
key attacks work for typically more than half of all keys, with d > 0.63 or
better [6], [7]. In this paper we will have d between 2732 and 2764 Tt is plau-
sible that such weak keys would occur in the real life. For example, given that
the population of our planet is about 232 and one person can use during their
life many cryptographic keys, an attack with d = 2732 should be considered
as nearly-realistic; it is plausible to assume that at some moment in the future
232 different GOST keys will be used worldwide and some keys will become
vulnerable to our attacks.

4.1. Weak Key Family 0

FACT 4.1.1 (Weak Keys Family 0, d = 2732, reduction to 1 KP for 8R). We de-
fine the Weak Keys Family 0 by keys such that £ has a fixed point A which is
symmetric, i.e., A = A. This occurs with density d = 2732

For every key in Weak Keys Family 0, given 232 chosen plaintexts for GOST,
we can compute A and obtain 1 P/C pair for 8 rounds of GOST correct with
very high probability of roughly at least 271
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Justification: If A is a symmetric value such that £(A4) = A then Ency(A) = A.
However there are also, on average, about one values for which Ency(A) = A,
as every permutation of 64 bits has about one fixed point which occurs by
accident, not due to the internal structure. Thus we obtain 1 P/C pair for 8
rounds of GOST £(A) = A, which is correct only with high probability of at
least 1/2.

4.1.1. Key Recovery with Family 0

In [I8], this method of Fact 11 is used to recover keys with time complexity
of 2192 and negligible memory. This is very hard to improve because the attack
uses only 1 KP for 32 rounds, and there are 2'°2 keys for which this pair is
correct, and all these keys must be checked against additional P/C pairs for the
full 32-rounds. In the next sections we will introduce new families of weak keys
able to achieve time complexities below 292

4.2. Weak Key Family 2.1

In this section we exhibit another family of weak keys, with the same density
d = 2732 but with more extensive possibilities. It can be seen as an extension
of the original double reflection attack described at Fig. 1 in Section 11 of [6] and
the resulting double reflection attack. If we require that B is also symmetric,
we will be able to simultaneously improve the probability of our guess being
true, from 27128 to 274 to obtain 4 P/C pairs for 8 rounds, and reduce the
data complexity. We obtain a triple reflection attack and it works only for weak
keys but the probability of these keys is quite large d = 2732 We call it not
Family 1 but Family 2.1 following a more extensive classification of attacks

on GOST in [6].

FACT 4.2.1 (Weak Keys Family 2.1, d = 2732 getting 3,4 and 5 KP for 8R).
We define the Weak Keys Family 2.1 by keys such there exists A such that all
the three values £(A), £2(A) and £3(A) are symmetric. This occurs with density
d = 2732 For every key in Family 2.1, we have the following four reductions:

1) with 232 CC we obtain 3 P/C pairs for 8 rounds of GOST correct with
P =275 (where CC means Chosen Ciphertexts)

2) with 232 ACC (Adaptive Chosen Ciphertexts) we obtain 4 P/C pairs for
8 rounds of GOST correct with P = 274

3) with 232 CC we obtain 4 P/C pairs for 8 rounds of GOST correct with

p=2%
4) with 232 ACC we obtain 5 P/C pairs for 8 rounds of GOST correct with
P =27
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Rounds Values Key size
Y
8 £ 256
Z Z
8 E[L] €[ 1] 256
A A A
s [l e[t]e 1] 256
B B BB
8 (1]e[1]& D[1T] 26
C CxC A
8 [(1]& D 256
D1 D B
8§[ 1] D 256
C
bits 64 64 64

FicURE 1. A weak-key black-box reduction which gives up to 5 pairs for 8 rounds.

Justification: It is easy to see that the event £(A) AND £?(A) AND &£3(A)
being symmetric leads to key density d = 264732732-32 — 932 The attack is
shown on Fig. [[l where > denotes S (swapping the two 32-bit halves).

We have three encryptions with internal reflection C' = Ency(A), also B =
Enc(Z), and A = Enc(Y) where due to the internal reflection, we have C' =
EX(A), B=E%(Z), and A = E2(Y).

There are two interesting attack scenarios. In all cases we start by guessing
C and B which are symmetric and therefore, to decrypt these and obtain re-
spectively A and Z we need only 232 CC. However if we also want to decrypt A
to obtain Y, we need 254 KP. We proceed as follows:

1. We guess two symmetric values B, C. They are both correct with P = 27%4

2. We determine A, Z by decrypting B and C' which are both symmetric.

3. We get 3 pairs £(Z) = A, £(A) = B, £(B) = C and our guess is correct
with probability 274 So far need 232 Chosen Ciphertext (CC).

4. Furthermore, if we also decrypt A we get Y and obtain one additional pair
E(Y) = Z. This is obtained at the price of 232 ACC (Adaptive Chosen
Ciphertexts). Here though A is not symmetric we do NOT need 254 KP.
We can decrypt all possible A obtained from decryption of all possible
symmetric values C. This requires 232 ACC.

5. Going one step backwards, we don’t decrypt A but also guess D which is
symmetric, We get 4 pairs £(Z) = A, E(A) = B, &(B) =C, £(C) =D
and our guess is correct with probability 279 Again we need only 232 CC.
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6. Now if we combine guessing D and decrypting A, we get 5 pairs given
264 KP and our guess is correct with probability 2796 We need 232 ACC
(Adaptive Chosen Ciphertexts).

Out of four possibilities given in Fact 2T we will use two in order to obtain
two new weak key attacks.

FACT 4.2.2 (Key Recovery for Family 2.1, 232 CC, d = 273?). One can recover
the keys for the Weak Keys Family 2.1 with 232 CC, running time of 21" GOST
encryptions and with negligible memory.

Justification: This is obtained by combination of the first reduction of Fact[ 21l
and of Fact Z10] which allows to enumerate a set of solutions and the time is
264+110 GOST encryptions. The total number of full 256-bits keys which are
false positives which need to be checked against additional P/C pairs for the
full 32 rounds of the cipher is comparatively smaller, about 2'2% which is un-
likely to influence the overall complexity of the attack which will be 217 GOST
encryptions.
Similarly, with just one more pair £(Y) = Z, we obtain

FAcT 4.2.3 (Faster Key Recovery for Family 2.1, 232 ACC, d = 2732). One
can recover the keys for the Weak Keys Family 2.1 with 232 ACC, running time
of 218 GOST encryptions and with negligible memory.

Justification: Here we replace 3 KP by 4 KP and Fact LI with 2!19
by Fact 2T 2 with 2°4 We need a total time of 264794 = 2158 GOST encryptions.

4.3. An Attack with ”Regular” Keys and 232 of Data per Device

In this sub-section we are going to convert our “weak key” attack into a “regu-
lar” attack with random 256-bit keys. The following attack scenario is relatively
plausible 232 devices with different GOST keys. In this plausible “Multiple Key”
scenario we are going to show how to break GOST with total cost of only 219
per key found and only 232 of data per device.

FAcT 4.3.1 (Key Recovery for a Diverse Population of Keys, d = 2732). If we
have a diverse population of at least 232 different keys, with access to 232 ACC
per key, one can recover one of these 256-bit keys in total overall time of about
2190 GOST encryptions (the total of data required is 264).

Justification: We apply Fact 23] to each of the 232 devices with random keys.
We recover one key out of 232 in total time of 2327158 including the time to check
all the other devices. In one case on average, the attack will work and output
a valid key which can be checked with additional pairs for that device. For the
other devices the attack fails and we abort it after some 2% GOST encryptions.

Quite remarkably the data complexity is only 232 per device. Single key at-
tacks on GOST with 232 of data had always a cost of at least 22?4 per key found,
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see [6], [14], [I7]. We are the first to achieve 290 GOST encryptions per key
recovered, in a scenario with a realistic number of devices with different random
256-bit keys and with reasonable memory, beating all known attack on both
time and memory. We have weak keys which ARE frequent enough to occur in
the real life and they are also individually CHEAP enough to break, in order
to worry about this attack overall, which is reflected by the total cost per key
being 2'%° GOST encryptions.

4.4. Weak Key Family 3

In this section we explore if better attacks exist, and in particular attacks with
complexity less than 2!28 at the price of further decreasing the density of weak
keys to values which are significantly less realistic but still non-negligible.

FACT 4.4.1 (Weak Keys Family 3, d = 2754 getting 4 KP for 8R). We define
the Weak Keys Family 3 by keys such there exists A such that £(A) = A,
E%(A) = A. This occurs with density d = 274 For every key in Family 3, we
have the following: with 264 KP we obtain 4 P/C pairs for 8 rounds of GOST,
correct with probability of roughly about P = 271

Justification: We proceed as follows:

1. First we observe that A is a fixed point for Ency(-). Indeed
Ency(A) = 9(5(53(,4))) - 3(3(52(2))) =D(S(A)) = D(A) = A,

Therefore given 264 KP we can identify A. Due to other possible fixed
points, our guess will be correct with probability roughly about P = 271

2. Moreover if we define B = £(A) we have A = £(B) and

Ency,(4) = 9(5(53(2))) - D(S(S(A))) = D(S(A)) = D(A) = B.
Therefore we can determine B from A.

3. Moreover, if we encrypt B we obtain another interesting value C' defined as:
Ency(B) = 9(5(53(3))) - D|bl(s(52(A)))
- D(s(g(Z))) =D(S(B)) =D(B) = C.

with the property that £(C) = B.

4. Overall our triple A, B, will be correct with probability about P = 2-1
We get 4 P/C pairs for 8 rounds which are £(A) = A, £(A) = B, £(B) = A,
E(C) = B and these are correct with probability 271

FACT 4.4.2 (Key Recovery for Weak Keys Family 3, d = 2754). One can recover
the keys for the Weak Keys Family 3 with 2% KP, running time of 2% GOST
encryptions and with negligible memory.

o4



CRYPTANALYSIS OF GOST IN THE MULTIPLE-KEY SCENARIO

Rounds Values Key size
A
8 g 256
B B
8 ELl 1€ 1] 256
A A A
S I I
A A A A
s [1Je[1]& D[] 2
B BB B
8 & D 256
A A C
8 1| D 256
A
bits 64 64 64

FIGURE 2. Weak Key Family 3 which gives 4 pairs for 8 rounds.

Justification: This is obtained by combination of the current reduction of
Fact E41] and Fact for 4 KP. We estimate that the probability that we
can guess correctly which fixed point A is the correct one is about half, and
accordingly on average Fact needs to be applied twice. The total number
of false positives which need to be checked against additional P/C pairs for the
full 32 rounds is small and can be neglected.

4.5. Attack on Regular Random 256-bit Keys with Total Time 259

Fact 4.5.1 (Key Recovery for a Diverse Population of Keys). If we have a di-
verse population of at least 264 different keys, with access to 264 KP per key, one
can recover one of these 256-bit keys in total overall time of about 2'%9 GOST
encryptions.

Justification: We apply the Fact to 264 random devices, for one of them
on average in time 2°° GOST encryptions it will output a valid key which can
be checked with additional pairs. We abort all the other cases at 2°° GOST
encryptions.

This actually means that GOST keys can be recovered in overall total time

of 2159 per key for multiple keys generated at random, which is substantially less
than 217 from [10].
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Rounds Values Key size

A
8 £ 256

B B
8 5\¢\5\¢\ 256
C C C
s [—Pegeg
A A Apa A
8 \H£\¢\£ D 256
B B~ B C
8 5 D 256
CxC A
8D 256
B
bits 64 64 64

FicurE 3. Weak Key Family 8.1 With Triple Reflection and 3 KP for 8R.

4.6. Weak Key Family 8.1

Here is another family of weak keys. We call Family 8.1 as it is known under
this name in other papers [6], [8]. In fact the paper [8] contains a replacement
component for the Family 8.1 attack of this paper with 22 faster running time
at the expense of much more memory.

FACT 4.6.1 (Weak Keys Family 8.1, d = 27% getting 3 KP for 8R). We define
the Weak Keys Family 8.1 by keys such there exists A such that

E3(A) = A,
and all the three values
A, B =E%(A),C = E3(A)
are symmetric (both 32-bit halves are equal). This occurs with density d = 2%

For every key in Family 8.1, given 232 CP we can obtain 3 P/C pairs for
4 rounds of GOST, correct with probability close to 1.

Justification: The expected number of cycles of length 3 for a random permu-
tation is 1/3 = 2716 for detailed statistics on random permutations. The proba-
bility that a random 64-bit permutation has a cycle of length 3 with 3 symmetric
points is roughly about 2796716 ~ 298
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We proceed as follows:
1. We observe that since £3(A) = A, we also have £3(B) = B and £3(C) = C.

2. We have
Ency,(A) = D(S(£3(A))) = D(S(A)) = D(4) = C = D(A).

In the same way, Ency(B) = A and Enc,(C) = B.

If we consider the 3-fold iteration Enc(-) we observe that all the three
points A, B, C are fixed points for Encj(-) and they are symmetric fixed
points of Encj(-).

3. Given 232 CP (all values we use are symmetric) we can identify A, B,C
because they form a cycle of length 3 for Ency(-) with 3 elements and we
do not expect that more such cycles exist in which all these elements would
also be symmetric. It would be an unlikely event.

4. We get 3 P/C pairs for 8 rounds which are £(A) = B, £(B) =C,E(C) = A
and these are correct with probability close to 1.

FACT 4.6.2 (Key Recovery for Weak Keys Family 8.1, d = 27%). For the weak
keys of Family 8.1 one can enumerate 254 candidates given 232 CP, with running
time of 219 GOST encryptions and with negligible memory.

Justification: This is obtained by combination of the current reduction of
Fact 6.1l and Fact 211 for 3 KP.

4.7. Conversion of Family 8.1 into a “Regular” Attack with Multiple
Keys Generated at Random

We have the following conversion with early rejection of non-weak keys:

FAcT 4.7.1 (Key Recovery for a Diverse Population of 2% Keys). If we have
a diverse population of at least 2°% different 256-bit GOST keys generated at ran-
dom, with access to 232 CP per key, one can recover one of these 256-bit keys
in total overall time of about 229 GOST encryptions (which is less than the
time to compute the data needed for the attack).

Justification: We consider 2976 random devices and we do NOT apply the
Fact for each device. Instead we examine the data, 232 CP with the en-
cryption of all symmetric points, to see if our attack is likely to be applicable. We
scan for all cases where the encryption is also symmetric and list all cases where
this is true. For a random permutation the probability that one symmetric point
gives another symmetric point after encryption is 2732 and there are 232 points.
Therefore we expect to find one on average but frequently also 0 or several such
cases. We examine these few cases for a cycle of length 3. This is going to happen
only with probability 27976 For all except a proportion of about 2797-¢ GOST
keys, all those where the key is not weak, we can reject them by checking 232
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plaintexts as explained here in time of 2°7-6+32 CPU clocks, which happily is sig-
nificantly less than 2°7-6+32 GOST encryptions, but rather about 2196 GOST
encryptions.

For the remaining proportion of 27976 we expect them to come from Fam-
ily 8.1 with overwhelming probability. Therefore for all the cases where the key
is weak, we enumerate 254 candidates for the correct key in time 2! GOST
encryptions due to Fact .6.2] and check which key is correct with additional
pairs for full 32 rounds. Overall we expect to recover one key in time of about
2110 4 9119.6 ~ 9120 GOST encryptions.

5. Summary of our attacks

In Table[ll we compare our new attacks with weak and regular keys generated
at random to earlier attacks. With regular keys there was no attack below 292
[6], [T4] which is due to having 2'92 false positives, see [6]. Finally for d = 2732
we obtain two attacks which are below 2!°2 For d = 2754 we are below 21,

In the last three lines we compare all these attacks by the cost of 1 key if we
dispose of a “sufficiently diverse” population of keys. For example, in the Fam. 3
column we see that an expected proportion of d = 275 keys have a security level
of only T = 2%. Again (cf. Fact 5.0)), if GOST is used with at least 264 different
keys, one can recover one of these keys in total time of not more than 21° GOST
encryptions indluding the time to examine all the key where the attacks does
not work. This is substantially less than 2192 from [I4] and even 27 from [10].
If we dispose of 219 GOST computations and not more, our attack works while
no single key attack can achieve anything useful.

We can also compare all attacks with 232 of data per device. Until now all
such attacks required at least 2224 in [6], [T4], [L7]. In this paper for the first time
ever we achieve 2'%0 GOST encryptions per key recovered, in the scenario with
a realistic number of devices with different random 256-bit keys. Arguably this
paper achieves both the cheapest overall attack on GOST ever found with 232
of data per device and also with 264 of data per device. We see that the security
of GOST degrades in a very substantial way in the multiple key scenario.

Some very recent attacks on GOST achieve even less, 2130 per key [19] and
even 2'2Y per key, this however at the price of much higher 2'%°-ish total data
requirements for all the devices combined, see [19] and Family 8.1 in this paper.
The paper [§] contains a replacement last step for our Family 8.1 attacks which
reduces time complexity by 2% at the expense of much higher memory. Other
attacks on GOST achieve even substantially less but they introduce additional
cryptanalytic techniques such as advanced differential properties with 2, 3 and
4 points cf. [6].
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6. Conclusion

This paper studies several interesting weak key attack classes for the block
cipher GOST. However, we are interested in such keys ONLY IF they can be
transformed into a “regular” attack on GOST, when it is used with multiple
256-bit keys generated at random. Our key results are summarized in Table [I1

We show that the security of GOST degrades surprisingly quickly when the
key diversity grows. With 232 different keys generated at random, some keys
can be recovered in time as little as 2158 Moreover we already have attacks in 2%°
for a still non-negligible proportion of 274 of full 256-bit keys. We observe that
295 . 964 ~ 2159 Accordingly we can achieve more than just a weak key attack.
For each of our weak key attacks we transform it into a “regular” attack on
a diverse population of random keys which is overall less costly and more feasible
to execute. For example following Fact L5011 given at least 2%4 different keys,
with 264 KP per key, one can recover one of these keys in total time of not more
than 21%% This including the time to examine all the other (stronger) keys.

Our results need to be compared to the fastest known single-key attack
on GOST. For 2% of data we have time complexity 2'7 of [I0] and for 232
of data it is 2191 in [6] or 2192 in [I4] with slightly less memory. However impor-
tantly, ciphers are hardly ever used in practice with single keys. On the contrary.
If we do not dispose of a computing power of 2'7° none of these attacks is of any
use. Is there a multiple key attack which is cheaper and more realistic than the
best single key attack? If we dispose of say 2!%° computations, is it possible to
recover some GOST keys? Furthermore, can we recover any 256-bit GOST keys
generated at random given only 220 computations? Very surprisingly the an-
swer is yes, we can. Even though this will require astronomical quantities of data,
it requires only 232 of data per device.

Our research on GOST have irreversibly changed the way in which we now
think about the security of block ciphers in general. Our main point is that the
popular notion of a single-key attack is in fact too restrictive and does NOT
capture all realistic attacks on a given cipher. Single key attacks on GOST
in 2'™ remain infeasible. In contrast given as little as just 2'?° computations,
see Fact 701 or even less, about 2101 cf. further results in [6], one can already
recover some GOST keys. Again all these are “regular” attacks in which keys
are random and uniformly distributed and weak keys occur with their natural
probability. It appears that the multiple random key scenario is stronger and
more versatile than the single key scenario, this from a very pragmatic point
of view, the cost per key recovered. and if we dispose of sufficient data. We should
never again consider that a block cipher which is not broken by a single key
attack is secure.
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Faster attacks can be obtained if we combine the techniques of this paper
with advanced differential properties [L0]—[12], which is really outside the scope
of this paper. A number of combined attacks with complexity reduction and
advanced differential properties with 2, 3 and 4 points and additional dedicated
steps allow to bring our 2!2° per key further down to about 219% cf. [6].
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