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CONTRADICTION IMMUNITY AND

GUESS-THEN-DETERMINE ATTACKS ON GOST

Nicolas T. Courtois — Jerzy A. Gawinecki — Guangyan Song

ABSTRACT. GOST is a well-known government standard cipher. Since 2011
several academic attacks on GOST have been found. Most of these attacks start

by a so called “Complexity Reduction” step [Courtois Cryptologia 2012] the pur-
pose of which is to reduce the problem of breaking the full 32-round GOST
to a low-data complexity attack on a reduced-round GOST. These reductions can
be viewed as optimisation problems which seek to maximize the number of values
inside the cipher determined at given “cost” in terms of guessing other values.
In this paper we look at similar combinatorial optimisation questions BUT at the

lower level, inside reduced round versions of GOST.
We introduce a key fundamental notion of Contradiction Immunity

of a block cipher. A low value translates to working software attacks on GOST
with a SAT solver. A high value will be mandatory for any block cipher to be
secure. We provide some upper bounds for the Contradiction Immunity of GOST.

1. The GOST encryption standard

The Russian encryption standard GOST 28147–89 is an important govern-
ment standard [18]. Its large key size of 256 bits make GOST a plausible alter-
native for AES-256 and 3-key triple DES. Clearly GOST is a serious cipher for
serious applications and at least two sets of GOST S-boxes have been explicitly
identified as being used by the most prominent Russian banks, cf. [19], [26].

The most complete current reference implementation of GOST in OpenSSL
library contains eight standard sets of S-boxes [19]. The attacks we consider
in this paper, work with a very similar complexity for any S-boxes.
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1.0.1. GOST and ISO standardisation

The cost of cryptography is still an important problem for the industry, for ex-
ample only around 2010 Intel implemented an encryption algorithm in some of
its CPUs, and not yet in all of its CPUs. It is therefore very important to notice
that in addition to the very long bit keys GOST has a much lower implementa-
tion cost than AES or any other comparable encryption algorithm. For example
in hardware GOST 256 bits requires less than 800 GE, while AES-128 requires
3100 GE, see [22]. Thus it is not surprising that GOST became an Internet stan-
dard, it is part of many crypto libraries such as OpenSSL [20], and is increasingly
popular also outside its country of origin [23]. Hard to think about a better al-
gorithm for the industry with its ultra-low implementation cost and 20 years of
cryptanalysis efforts behind it [22]. In 2010 GOST was submitted to ISO 18033
to become a worldwide encryption standard. Less than 10 block ciphers have
ever become an ISO standard. Unhappily in 2011 several key recovery attacks
on GOST have been found [8], [10], [12], [14], [20].

1.0.2. Cryptanalysis of GOST

The turning point in the security of GOST was the discovery of the so called
“Reflection” property [21]. Initially at Indocrypt 2008 only a weak-key attack
with time complexity of 2192 is proposed, with large proportion of 2−32 of weak
keys. Then in 2011 several attacks on regular GOST keys have been discovered,
and more than half of these new attacks use this reflection property [16], [20]
sometimes twice, three or four times [10]. Most these attacks can be described
as attacks with a “Complexity Reduction” [8], [10] where from some data for
the full 32 rounds GOST we obtain a certain number of pairs for 8 or less
rounds of GOST. The quantity of data available after reduction is very small,
for example 2, 3 or 4 pairs for a reduced cipher. In this paper we look precisely at
questions pertaining to cryptanalysing 8 rounds GOST with 2, 3, 4 KP needed
as a last step in numerous already known attacks on GOST [8], [9], [10].

These reductions can be viewed as optimisation problems which seek to maxi-
mize the number of values determined about some values inside the cipher which
can be obtained by guessing some other values at given “cost”. In this paper we
consider similar optimisation questions of finding a possibly optimal guess-then-
determine attack BUT at the lower level, inside reduced round versions of GOST.
We postulate that there should be a phase transition between hard and easy “de-
termine” problems, and that one can make this phase transition occur earlier
by combinatorial optimization of the set of bits to “guess”. These optimization
questions are the main object of this paper. Many attacks which do not use any
reflections have also been proposed [8], [10], [16] and also differential attacks
which do not fall into the “Complexity Reduction” category. The most recent
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advanced differential attack on GOST has time complexity of 2179, see [12], [14]
which is also the best single-key attack known.

2. The internal structure of GOST

GOST is a block cipher with a simple Feistel structure, 64-bit block size,
256-bit keys and 32 rounds. Each round contains a key addition modulo 232,
a set of 8 bijective S-boxes on 4 bits, and a simple rotation by 11 positions.

GOST has 32 identical rounds such as the one described on Fig. 1 below.
They differ only by the subsets of 32 key bits which they use. GOST has a weak
key schedule which is the main source of all the attacks on full 32-round GOST
[8], [10]–[14], [16], [20]. In this paper however we only look at up to 8 rounds
of GOST which have independent 32-bit keys which do not repeat, therefore we
can ignore the GOST key scheduling totally.

We number the inputs of the S-box Si for i = 1, 2, . . . , 8 by integers from
4i+ 1 to 4i+ 4 out of 1 . . . 32 and its outputs are numbered according to their
final positions after the rotation by 11 positions: for example the inputs of S6
are 20, 21, 22, 23 and the outputs are 32, 1, 2, 3.

Figure 1. One round of GOST and connections in the following round.

On our picture Fig. 1 the � denotes the addition modulo 232. At the left
margin on Fig. 1 we also show S-box numbers in the next round, which is very
helpful, to see which bits are successfully determined in our attacks on GOST.
In a great simplification, in most cases, one S-box in one round affects essen-
tially only two consecutive S-boxes in the next round. Additional propagation is
obtained due to the Feistel structure and due to carries in the modular addition.
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3. Algebraic cryptanalysis with complexity reduction

Following [8], [10] the work of cryptanalyst who wants to cryptanalyse GOST
can be split into two independent tasks. First task is how to achieve a software
algebraic attack on a reduced-round version as discussed in the previous section.
The second question is if and how the complexity major variants of full GOST
with 32 rounds can ever be reduced to a problem of breaking a cipher with
much less rounds. In fact only in the recent 5 years it became possible to design
and implement an appropriate last step for many such attacks which is a soft-
ware algebraic attack, a Meet-In-the-Middle (MITM) attack, or other low-data
complexity attack. This last step is the main focus in this paper.

3.1. Reductions and black-box reductions

The main idea is as follows [8], [10]: In order to reduce the attack complex-
ity, we exploit the self-similarity of the cipher (due for example to a weak key
schedule) and add some well-chosen assumptions which produce interesting and
sometimes quite non-trivial consequences due to the high-level structural prop-
erties of the cipher, which makes cryptanalysis problems smaller, simpler and
easier to solve. In this process we need to minimise the costs (in terms of prob-
ability that our assumptions hold) and to maximise the benefits (in terms of
the number and the complexity of interesting relations which hold under these
assumptions).

This process is called Algebraic Complexity Reduction, see [8], [10].
In most cases what we get is to compute (guess or determine) many internal
values inside one or several decryptions, and literally break the cipher apart
into smaller pieces. In particular we have Black-Box Algebraic Complex-
ity Reductions where we obtain real black-box reductions, to for example the
same cipher with strictly less rounds (and less data) again at the cost of some
well-chosen assumptions. Most but not all reductions we are aware of are real
“black box” reductions, see [10] for a detailed discussion. The notion of Alge-
braic Complexity Reduction creates new important optimisation problems
in symmetric cryptanalysis: which deals with the fundamental question of how
we can reduce the complexity of a cipher in cryptanalysis to a simpler problem,
with a limited quantity of data, and with greatly reduced complexity, and this in
the best possible (optimal) way while many interesting and non-trivial solutions
will exist. One example of a Black-Box Algebraic Complexity Reduction from
264 KP for 32 rounds of GOST, to 4 KP for 8 rounds of GOST, can be found
in [8] and many more in [10].

Algebraic Complexity Reduction is a sort of umbrella paradigm which gener-
alizes many already known fixed point, sliding, reflection and involution attacks.
One is able to exploit similarities of individual sub-blocks and their inverses.
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We have reflection attacks [21] but also have new attacks with double triple and
quadruple reflection [10]. We are able to relax the conditions necessary in slide
attacks [1] in nearly arbitrary ways. We have many new sorts of self-similarity
attacks, cf. [10]. though reflection attacks [10], [21] are related to fixed point
attacks which are an important attack for ciphers with block size being smaller
than the key size, cf. [4], [5].

3.2. Optimizing the reductions: amplification

Reductions can be compared in terms of the number of pairs obtained, the
resulting reduced number of rounds, success probability, and in terms of plaintext
complexity, see [8], [10]. A key property of these reductions is the process of so
called Amplification which is inspired by [6, Section 6.3].

���������� 1 (Amplification, Informal)� The goal of the attacker is to find
a reduction where he makes some assumptions at a certain initial cost, for ex-
ample they are true with probability 2−X or work for certain proportion 2−Z

of keys. Then the attacker can in constant time determine many other internal
bits inside the cipher to the total of Y bits.

We are only interested in cases in which the values X and Z are judged
realistic for a given attack, for example Z < 32 and X < 128.

We call amplification the ratio A = Y/X.

The amplification is an important question in algebraic cryptanalysis which
was previously discussed in [6]. We should note that there are some difficulties
in defining this ratio formally:

(1) We claim that we need specific definitions for each individual cipher and
for each specific attack method. For example Y can be the total number
of linear equations obtained with the ElimLin algorithm [3], [6], [7] after
adding a well-chosen set of X linear equations on the internal bits inside
the cipher.

(2) Intuitively, the higher, this amplification coefficient A is, while X and Z
remain below a certain threshold, the stronger and more surprising is the
attack obtained.

(3) With higher values of X, the amplification can also be higher, however the
attacker must limit the size of X for the whole the attack to remain fast
enough overall.

(4) It is very difficult to know if an attack with given parameters may exist.

Example. In the most basic slide attack based on periodicity in the key sched-
uling [1] the amplification is unlimited. From one “slid pair”, we can obtain
another “slid pair”, then another, etc. However in more advanced sliding attacks
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which operate with imperfect periodicity, the amplification can be limited, or
occur only after the attacker guesses a few key bits, see [4], [5].

Another example where the amplification is exceptionally high is the Weak
Key Family 3 in [10]. In this case the amplification is very very high: X = 1
and Y = 256 while Z = 64, see [10]. This can only be obtained for some weak
keys in GOST with Z = 64. In spite of the additional of factor of 264 implied
by this value of Z the amplification is very high and overall it leads to very
efficient attacks on certain GOST keys, see [9], [10]. The present paper is mostly
motivated by the question how one can identify the suitable sets of key bits for
such attacks.

3.3. Working at the low level

The amplification is easy to define when as in many initial steps in the crypt-
analysis of GOST [10], we deal with black boxes. It is harder but possible
to define at the low level, when we look at a complete functional description
of a cipher. Here the question is what is the best possible software attack with
tools such as the ElimLin algorithm [3], [6], [7] SAT solvers [2], [15], Gröbner
bases [17] and other [24]. In all these algorithms we observe the phenomenon
of Amplification in various forms. For example we can study and count linearly
independent linear equations and try to amplify their number by the ElimLin
algorithm, see [3], [6], [7].

When the ElimLin algorithm is itself the last step of the attack, or if the
SAT solver is the last step of the attack, this amplification phenomenon becomes
very important. We observe an avalanche-like phenomenon where more and more
new linear equations are generated in the ElimLin algorithm, until the system
is solved. Similarly, with SAT solver there is a point of phase transition where
the problem becomes really easy to solve. If we want to understand algebraic
cryptanalysis we need precisely to work on this face transition phenomenon itself.
What happens after this threshold when the problem is just very easy to solve
is less important.

In this paper we focus more specifically on cryptographic attacks with SAT
solvers, and on GOST, which is a nice example of a weak government standard
cipher with relatively poor diffusion. There are two main approaches in SAT
cryptanalysis or two main algorithms to break a cipher with a SAT solver:

(1) The SAT Method: Guess X bits and run a SAT solver which, if the
assumption on X bits is correct takes time T . Abort all the other compu-
tations at time T . The total time complexity is about 2X · T .

(2) The UNSAT Method: Guess X bits and run a SAT solver which, if
the assumption on X bits is incorrect finds a contradiction in time T with
large probability 1− P say 99%.
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With a small probability of P > 0, we can guess more key bits and
either find additional contradictions or find the solution.

The idea is that if P is small enough the complexity of these additional
steps can be less then the 2X · T spent in the initial UNSAT step.

(3) A Mixed UNSAT/SAT Attack: In practice maybe P is not as small
as we wish, and therefore we may have a mix of SAT and UNSAT method:
where the final complexity will be a sum of two terms none of which can
be neglected. We will see a very nice example how a combined attack can
be better than any of SAT and UNSAT methods in isolation in Section 6.

3.4. Contradiction immunity and SAT immunity

If we want to qualify the resistance of a cipher against the two attacks de-
scribed above, it is natural to define the two following numbers:

���������� 2 (Contradiction immunity or UNSAT immunity)� We define the
Contradiction Immunity of a given cipher and for M = 1 plaintext/ciphertext
pairs of the cipher as being the smallest possible number of key bits which can
be fixed so that given M = 1 KP we can obtain a contradiction with probability
at least 50 % by just examining the logical consequences of these key bits. We
require this contradiction to be found in a very short time, less than 1 second
for the best SAT solver available.

Similarly we define:

���������� 3 (SAT Immunity or satisfaction immunity)� We define the SAT
Immunity of a given cipher and for M plaintext/ciphertext pairs of the cipher
as being the smallest possible number of key bits which can be fixed so that
given M KP we can compute the secret key by the best available SAT solver
in a relatively short time, say less than 1000 seconds.

Discussion: These notions are as precise as they can be. They depend on soft-
ware used, but not excessively. Because we can only hope to provide upper
bounds for this quantity by concrete “attacks” with concrete software, it makes
sense to use (each time) the best available software, and improve these bounds
slightly as the software improves. Importantly, we should consider that the first
notion is much more robust and more fundamental: it expected to depend only
on the connections between the components with the “optimal” subset of key
bits, we do not expect that the contradiction will be found be examining too
many other bits, but just by simple step-by-step local analysis. We also expect
that the time to finding a contradiction will be essentially zero and will not de-
pend too much on the software used. In contrast, the SAT Immunity can only be
determined by somewhat “solving” the whole cipher, with the avalanche effect.
Unless we are able to determine all the bits in the whole cipher, we do not know
if the cipher is really solvable. It is safe to say that nobody really understands
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the complexity of SAT solvers in practice. Our experience shows that the results
for the second notion will depend a lot on the SAT solver software used and
where some software works well, some other does not seem to work at all (!).

A small technicality is that in order to determine the key uniquely in many
ciphers with key size bigger than block size, it is necessary to use some M > 1
while for the first notion, for finding contradictions, we can frequently limit to
considering the case where M = 1.

3.5. Applications of UNSAT/SAT immunities

Cryptanalysis. The main idea is that these two numbers will allow to evaluate
the security of the cipher against cryptanalytic attacks with a SAT solver. Upper
bounds we obtain do translate, more or less, as we will see, into concrete attacks
with complexity of about 2X. The two figures will also indicate which of the
three strategies: SAT/UNSAT/Mixed is more likely to work.

Design of block ciphers. It is easy to see that the designer of a cipher can
very effectively lower-bound these quantities. This will be achieved by making
sure that each S-box in each round influences as many S-boxes as possible in
the next round. This is not all very different than designing a cipher which is
provably resistant to linear and differential cryptanalysis. Interestingly, Schneier
once claimed that “Against differential and linear cryptanalysis, GOST is proba-
bly stronger than DES” [26]. Therefore we should also expect that Contradiction
Immunity of DES and GOST are comparable. Happily, similar attacks with SAT
solvers have been developed for both DES [3] and GOST [15]. In fact, it is ob-
vious that the diffusion in DES is much better than in GOST and so is the
Contradiction Immunity in DES. However we need to be careful about drawing
any conclusions and direct comparisons do not mean much. If the contradiction
immunity is 78 for 8 out of 32 rounds of GOST with 3 KP and 256-bit keys, is
it better or less good, than contradiction immunity being 20 for 6 rounds out
of 16 of DES with 1 KP and 56-bit keys? It is very hard to say.

4. Application to DES

In this section we give some basic results for DES obtained by the methods
of [3] with however a better SAT solver CryptoMiniSat 2.92 [25]. Unhappily
in DES the key bits are spread more or less uniformly in different rounds, and
they tend to repeat many times. Therefore it is difficult to choose really good
sets of bits and for now we just report upper bounds obtained when choosing
the key bits at random, and letting the SAT solver to do the job.

	
�� 1� The Contradiction Immunity is at most 44 for 8 rounds of DES.
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�� 2� The SAT Immunity is at most 34 for 8 rounds of DES and 1 KP.

These two results were obtained with the gate-efficient encoding described
in [3], and with CryptoMiniSat 2.92 [25]. We found no attack on 8 rounds of DES
and 1 KP which would be faster than brute force. For ultra low-data complexity
attacks, 8 rounds of DES seem already secure or secure enough.

5. Application to GOST

In this paper we are going to provide some results on the Contradiction Immu-
nity and SAT Immunity of GOST. These results are constructive upper bounds.

For a long time we thought that the Contradiction Immunity of 8 rounds
of GOST was about 128. The reason for that can be found on Fig. 4 in [14]:
it is possible to see that GOST splits very neatly into two nearly independent
ciphers with 128-bit key each, which are only loosely connected. With this idea
it is easy to understand why a software/algebraic attack on 8 rounds of GOST
with complexity of 2120 seems plausible and natural. However recently we found
that it is much lower than 128, much closer to 64. This was the main motivation
for writing this paper.

Notation, cf. Fig. 2: We denote by S13 just 1 higher ranking bit at S-box
1 in a given round. Similarly we denote by S33 the 3 lower ranking bits of S3.

	
�� 3� The Contradiction Immunity for 8 rounds of GOST is at most 78.

Justification: We have constructed and tried many different sets aiming at a con-
tradiction in the middle. Our best set is as follows (cf. Fig. 2): 0-15,47-58,
64-70,111-114,128-130,175-182,192-202,239-255. The contradictions can be found
in time of 0.06 s with CryptoMiniSat 2.92 software [25] with probability of about
50%. It is easy to see that they could be obtained in essentially constant time
by a dedicated algorithm with some small precomputed tables.

Remark� In fact we come remarkably close to 68 bits. If we consider the set
of 68 bits later shown on Fig. 3 and also used in [9], we we achieve about 39%
UNSAT with CryptoMiniSat 2.92. It is remarkably close but it does not achieve
50% required. This may seem strange, but in order to achieve 50%, many more
key bits are needed, cf. Fact 3 above. This is because in GOST it makes a lot
of sense to guess key bits for full S-boxes, and S-boxes active in one round call
for other S-boxes being also active.
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Figure 2. Our best set of 78 bits for UNSAT.

5.1. SAT immunity of GOST

Unhappily, it turns out that a set which is good for UNSAT is typically
NOT good at SAT. No SAT solver software we dispose of is able to find the
missing bits if the 78 bits of Fig. 2 are fixed. Happily we have found sets which
are very good at SAT and they are in fact smaller than 78. Our best result is
as follows:

	
�� 4� The SAT immunity for 8 rounds of GOST and 4 KP is at most 68.

Justification: We use the following set of bits depicted on Fig. 3 0-15,51-55,
64-66,128-130,179-183,192-207,224-231,244-255 which is also used in [9]. All the
remaining 256-68 bits can be determined in time of about 400 seconds using
GOST encodings described in [15] and with CryptoMiniSat 2.92 [25].

From here a naive “SAT strategy” attack on GOST would be to run a SAT
solver for 400 seconds 268 times. This would be about 299 GOST encryptions.

Further improvement. In order to improve this attack, the interesting ques-
tion is if we can obtain contradictions when one of the 268 cases is incorrect, and
for what proportion of cases, and how long would it take. In other terms, we
would like our set of 68 bits or possibly a smaller subset, to be good at UNSAT,
which is the case as we have previously seen. In our attack with 4 KP we want
to find a contradiction for all the 4 pairs simultaneously. This will be easier
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than contradiction with 1 KP we studied previously. This leads to the following
improved attack which mixes the SAT and UNSAT strategies and which is also
described in [9].

Figure 3. Our best set of 68 bits for SAT.

6. A mixed attack with 4 KP

	
�� 5� Given 4 KP for 8 rounds of GOST the full 256-bit key can be found
in time of about 294 GOST computations and negligible memory.

Justification: As in [9] we proceed as follows.

(1) We use our set of 68 bits as on Fig 3.

(2) We run the software 268 times for all possible assignments of the 68 bits.

(3) Computer simulations with the timeout of 7 seconds, a proportion of 1−2−5

of cases on 68 bits terminates with UNSAT within 2 s on average.

(4) Overall, we only need to run a proportion of 2−5 of all the 268 cases for
as many as 400 seconds, in other cases it simply terminates automatically
within 2 s which is 223 GOST encryptions on the same CPU.
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(5) Assuming that all the other cases run for 400 s (some still terminate earlier)
our conservative estimate of the attack time is 268+23 + 268+31−5 ≈ 294

GOST computations.

6.1. Application to full 32-round GOST

Following [9], [10], this can be transformed into an attack on GOST in the
multiple key scenario. If there is a suitable population of at least 264 different
keys generated at random, then one can find one valid 256-bit key, in time
of about 294 GOST encryptions for one (weaker) key. This can be converted into
attacks on full GOST not in just one way, on the contrary there are tens of ways
of doing it which is outside of the scope of this paper, we refer to [8], [9], [10].

7. Conclusion

In this paper we introduce a new notion of Contradiction Immunity and a re-
lated notion of SAT Immunity. These definitions lead to new computational
optimization problems in cryptography, which can be seen as looking for an op-
timal software guess-then-determine attack. We provide our best optimizations
found which were constructed following a sort of meet-in-the middle strategy.
Our key result is that the Contradiction Immunity for the GOST cipher is quite
low, about 78, for 8 rounds, instead of 120 which we initially expected. We can
compare GOST to DES: for 8 rounds of DES the Contradiction Immunity is
relatively to key size, high enough to prevent attacks with a SAT solver.

The main outcome of this research is not just providing a bound on the two
Immunity figures, but to provide concrete sets of bits based on which we can
build concrete attacks on the given cipher. Theses sets are fundamental in being
able to break 8 rounds of GOST in time of about 294 and which extend to attacks
on full GOST in a variety of ways, see [9], [10].

We postulate that the designers of ciphers should insure that they have suf-
ficiently high Contradiction Immunity. This is not very hard to achieve and
amounts to applying all the already known methods for achieving better diffu-
sion: making sure that each S-box in each round influences as many S-boxes as
possible in the next round, which is achieved by the well known tools such as
the avalanche criteria, wide-trail strategy, MDS codes, larger S-boxes, etc.

Our notion of Contradiction Immunity is not exactly a well-defined mathe-
matical concept. It clearly depends a lot on the software used and even more
for the SAT Immunity. Therefore, on one side it is possible to consider that
our work has a methodological flaw and is not well founded. However in cryp-
tography problems to formally define certain concepts are not uncommon, for
example security claims will depend on how the reference Turing Machine is
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built, and we do not know what is a secure hash function, we can only define
a family of hash functions. In fact, on the other side, this property could be
seen not as a flaw, but as an important feature. Using concrete software greatly
increases the usefulness of our notions as comparison metric for different ciphers,
as in fact we are able to substantiate our comparisons with actual working and
highly optimized software key recovery attacks. This paper allows to built a con-
crete metric to measure the relative strength of various ciphers against realistic
guess-then-determine attacks.
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